Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 111, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024907

RESUMO

BACKGROUND: Despite rapid developments in immunotherapy and targeted therapy, dacarbazine (DTIC)-based chemotherapy still has been placed at the first-line for advanced melanoma patients who are after failure of immunotherapy or targeted therapy. However, the limited response rate and survival benefit challenge the DTIC-based chemotherapy for advanced melanoma patients. METHODS: Two melanoma cell lines, A375 and SK-MEL-28 were cultured with PA and DTIC over a range of concentrations for 72 h and the cell viabilities were detected by CCK8 assay. The Bliss model and ZIP model were used for calculating the synergistic effect of PA and DTIC. DNA double-strand breaks in the two cell lines were examined by the Comet assay, and cell apoptosis was analyzed by flow cytometry. The short hairpin RNA (shRNA)-mediated knockdown, Real-time polymerase chain reaction (RT-PCR) and Western blot were performed for molecular analysis. RESULTS: In the present study, we report that Protocatechuic aldehyde (PA) synergistically enhances the cytotoxicity of DTIC to two melanoma cell lines, A375 and SK-MEL-28. The combination of PA and DTIC augments DNA double-strand breaks and increases cell apoptosis. Further mechanism study reveals that PA destabilizes MGMT protein (O-6-Methylguanine-DNA Methyltransferase) through the ubiquitin-proteasome process and directly repairs DTIC-induced genetic lesions. Knockdown of MGMT compromises the synergistic effect between PA and DTIC. CONCLUSION: Our study demonstrates that the bioactive compound, Protocatechuic aldehyde, synergistically promotes the cytotoxicity of DTIC to melanoma cells through destabilization of MGMT protein. It could be a potential candidate for melanoma chemotherapy.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Apoptose , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , DNA/farmacologia , DNA/uso terapêutico
2.
J Integr Med ; 21(6): 584-592, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989697

RESUMO

OBJECTIVE: To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation. METHODS: Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9. RESULTS: EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry. CONCLUSION: Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.


Assuntos
Interleucina-17 , Psoríase , Animais , Camundongos , Interleucina-17/efeitos adversos , Interleucina-17/metabolismo , Molécula 1 de Adesão Intercelular , Imiquimode/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Ligantes , Psoríase/tratamento farmacológico , Psoríase/induzido quimicamente , Queratinócitos , Inflamação/tratamento farmacológico , Quimiocinas/efeitos adversos , Quimiocinas/metabolismo , Interferon gama/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Int Immunopharmacol ; 112: 109270, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179418

RESUMO

Anti-inflammation medication is one of the most important treatment for people with atopic dermatitis (AD) which presents persistent type 2 inflammation in skin lesions. Interaction between activated keratinocytes and immune cells in AD skin lesions amplifies inflammatory signaling by augmenting production of cytokines, such as keratinocyte-derived thymic stromal lymphopoietin (TSLP) and interleukin-33 (IL-33). Phellopterin is a bioactive compound isolated from ethanol extract of Angelica dahurica root which has been traditionally used for AD therapy in China. In the present study, we showed that Phellopterin possessed anti-type 2 inflammation activity and alleviated AD-like phenotypes including reduction in serum immunoglobulin E (IgE) levels and infiltration of eosinophils and mast cells in the AD-like skin lesions. Further molecular analysis found that Phellopterin suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705, and the expression of TSLP and IL-33 in epidermal keratinocytes of AD-like lesions. In vitro studies in cultured human keratinocytes demonstrated that STAT3 was required for interleukin-4 (IL-4)-induced overexpression of TSLP and IL-33. Phellopterin inhibited IL-4-induced activation of STAT3, which leaded to suppress the STAT3-mediated transcription of TSLP and IL-33. Our study suggested that Phellopterin is an active compound with bioactivities of anti- type 2 inflammation and STAT3 inactivation, thus allowing to be a promising candidate for AD topical therapy.


Assuntos
Dermatite Atópica , Humanos , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Fator de Transcrição STAT3/metabolismo , Queratinócitos , Citocinas/metabolismo , Inflamação/metabolismo , Imunoglobulina E/metabolismo , Etanol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA