Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Biol Evol ; 36(4): 742-756, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668797

RESUMO

The mitochondrial intermembrane space evolved from the bacterial periplasm. Presumably as a consequence of their common origin, most proteins of these compartments are stabilized by structural disulfide bonds. The molecular machineries that mediate oxidative protein folding in bacteria and mitochondria, however, appear to share no common ancestry. Here we tested whether the enzymes Erv1 and Mia40 of the yeast mitochondrial disulfide relay could be functionally replaced by corresponding components of other compartments. We found that the sulfhydryl oxidase Erv1 could be replaced by the Ero1 oxidase or the protein disulfide isomerase from the endoplasmic reticulum, however at the cost of respiration deficiency. In contrast to Erv1, the mitochondrial oxidoreductase Mia40 proved to be indispensable and could not be replaced by thioredoxin-like enzymes, including the cytoplasmic reductase thioredoxin, the periplasmic dithiol oxidase DsbA, and Pdi1. From our studies we conclude that the profound inertness against glutathione, its slow oxidation kinetics and its high affinity to substrates renders Mia40 a unique and essential component of mitochondrial biogenesis. Evidently, the development of a specific mitochondrial disulfide relay system represented a crucial step in the evolution of the eukaryotic cell.


Assuntos
Evolução Biológica , Eucariotos/genética , Mitocôndrias/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Respiração Celular , Dissulfetos , Escherichia coli , Eucariotos/metabolismo , Glutationa/metabolismo , Glicoproteínas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxinas/metabolismo
2.
BMC Biol ; 15(1): 106, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117860

RESUMO

BACKGROUND: Many proteins of the mitochondrial intermembrane space (IMS) contain structural disulfide bonds formed by the mitochondrial disulfide relay. In fungi and animals, the sulfhydryl oxidase Erv1 'generates' disulfide bonds that are passed on to the oxidoreductase Mia40, which oxidizes substrate proteins. A different structural organization of plant Erv1 proteins compared to that of animal and fungal orthologs was proposed to explain its inability to complement the corresponding yeast mutant. RESULTS: Herein, we have revisited the biochemical and functional properties of Arabidopsis thaliana Erv1 by both in vitro reconstituted activity assays and complementation of erv1 and mia40 yeast mutants. These mutants were viable, however, they showed severe defects in the biogenesis of IMS proteins. The plant Erv1 was unable to oxidize yeast Mia40 and rather even blocked its activity. Nevertheless, it was able to mediate the import and folding of mitochondrial proteins. CONCLUSIONS: We observed that plant Erv1, unlike its homologs in fungi and animals, can promote protein import and oxidative protein folding in the IMS independently of the oxidoreductase Mia40. In accordance to the absence of Mia40 in many protists, our study suggests that the mitochondrial disulfide relay evolved in a stepwise reaction from an Erv1-only system to which Mia40 was added in order to improve substrate specificity. Graphical Abstract The mitochondrial disulfide relay evolved in a step-wise manner from an Erv1-only system.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Oxirredução , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 287(41): 34484-93, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22904327

RESUMO

The terminal enzyme of the respiratory chain, cytochrome c oxidase, consists of a hydrophobic reaction center formed by three mitochondrially encoded subunits with which 9-10 nuclear encoded subunits are associated. The three core subunits are synthesized on mitochondrial ribosomes and inserted into the inner membrane in a co-translational reaction facilitated by the Oxa1 insertase. Oxa1 consists of an N-terminal insertase domain and a C-terminal ribosome-binding region. Mutants lacking the C-terminal region show specific defects in co-translational insertion, suggesting that the close contact of the ribosome with the insertase promotes co-translational insertion of nascent chains. In this study, we inserted flexible linkers of 100 or 200 amino acid residues between the insertase domain and ribosome-binding region of Oxa1 of Saccharomyces cerevisiae. In the absence of the ribosome receptor Mba1, these linkers caused a length-dependent decrease in mitochondrial respiratory activity caused by diminished levels of cytochrome c oxidase. Interestingly, considerable amounts of mitochondrial translation products were still integrated into the inner membrane in these linker mutants. However, they showed severe defects in later stages of the biogenesis process, presumably during assembly into functional complexes. Our observations suggest that the close proximity of Oxa1 to ribosomes is not only used to improve membrane insertion but is also critical for the productive assembly of the subunits of the cytochrome c oxidase. This points to a role for Oxa1 in the spatial coordination of the ribosome with assembly factors that are critical for enzyme biogenesis.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1862(6): 183238, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32119864

RESUMO

Acid-secreting intercalated cells of the collecting duct express the chloride/bicarbonate kidney anion exchanger 1 (kAE1) as well as SLC26A7, two proteins that colocalize in the basolateral membrane. The latter protein has been reported to function either as a chloride/bicarbonate exchanger or a chloride channel. Both kAE1 and SLC26A7 are detected in the renal medulla, an environment hyper-osmotic to plasma. Individuals with mutations in the SLC4A1 gene encoding kAE1 and mice lacking Slc26a7 develop distal renal tubular acidosis (dRTA). Here, we aimed to (i) confirm that SLC26A7 can function as chloride/bicarbonate exchanger in Madin-Darby canine kidney (MDCK) cells, and (ii) examine the behavior of SLC26A7 relative to kAE1 wild type or carrying the dRTA mutation R901X in iso- or hyper-osmotic conditions mimicking the renal medulla. Although we found that SLC26A7 abundance increases in hyper-osmotic growth medium, it is reduced in low pH growth conditions mimicking acidosis when expressed at high levels in MDCK cells. In these cells, SLC26A7 exchange activity was independent from extracellular osmolarity. When SLC26A7 protein was co-expressed with kAE1 WT or the R901X dRTA mutant, the cellular chloride/bicarbonate exchange rate was not additive compared to when proteins are expressed individually, possibly reflecting a decreased overall protein expression. Furthermore, the cellular chloride/bicarbonate exchange rate was osmolarity-independent. Together, these results show that (i) in MDCK cells, SLC26A7 is a chloride/bicarbonate exchanger whose abundance is up-regulated by high osmolarity growth medium and (ii) acidic extracellular pH decreases the abundance of SLC26A7 protein.


Assuntos
Antiportadores de Cloreto-Bicarbonato/análise , Concentração de Íons de Hidrogênio , Rim/citologia , Concentração Osmolar , Animais , Antiporters/análise , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Cães , Células Epiteliais/química , Regulação da Expressão Gênica , Células Madin Darby de Rim Canino , Transportadores de Sulfato/análise
5.
Elife ; 52016 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-27343349

RESUMO

Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by the addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as a trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a 'holding trap' rather than a 'folding trap' mechanism.


Assuntos
Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise Mutacional de DNA , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Transporte Proteico
6.
J Cell Biol ; 214(4): 417-31, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27502485

RESUMO

Tim17 is a central, membrane-embedded subunit of the mitochondrial protein import machinery. In this study, we show that Tim17 contains a pair of highly conserved cysteine residues that form a structural disulfide bond exposed to the intermembrane space (IMS). This disulfide bond is critical for efficient protein translocation through the TIM23 complex and for dynamic gating of its preprotein-conducting channel. The disulfide bond in Tim17 is formed during insertion of the protein into the inner membrane. Whereas the import of Tim17 depends on the binding to the IMS protein Mia40, the oxidoreductase activity of Mia40 is surprisingly dispensable for Tim17 oxidation. Our observations suggest that Tim17 can be directly oxidized by the sulfhydryl oxidase Erv1. Thus, import and oxidation of Tim17 are mediated by the mitochondrial disulfide relay, though the mechanism by which the disulfide bond in Tim17 is formed differs considerably from that of soluble IMS proteins.


Assuntos
Dissulfetos/metabolismo , Ativação do Canal Iônico , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência Conservada , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mutantes/metabolismo , Oxirredução , Ligação Proteica , Precursores de Proteínas/metabolismo , Transporte Proteico , Relação Estrutura-Atividade , Temperatura
7.
Methods Mol Biol ; 1270: 37-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25702107

RESUMO

Mitochondria are essential organelles of eukaryotic cells. The vast majority of mitochondrial proteins is encoded within the nuclear genome and translocated into various mitochondrial compartments after translation in the cytosol as preproteins. Even in rather primitive eukaryotes like yeasts, there are 700-1,000 different proteins that need to be recognized in the cytosol, directed to the protein translocases in the two mitochondrial membranes and sorted to their appropriate mitochondrial subcompartment. In vitro reconstituted import systems have proved to be important tools to study these processes in detail. Using isolated mitochondria and radioactively labeled precursor proteins, it was possible to identify several import machineries and pathways consisting of a large number of components during the last few decades.


Assuntos
Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Leveduras/metabolismo , Fracionamento Celular , Sistema Livre de Células , Técnicas In Vitro , Transporte Proteico
8.
Mol Biol Cell ; 26(2): 195-204, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392302

RESUMO

The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.


Assuntos
Glutarredoxinas/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/metabolismo , Citosol/metabolismo , Glutarredoxinas/genética , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Immunoblotting , Cinética , Metaloproteases/genética , Metaloproteases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Oxirredução , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Microb Cell ; 1(3): 81-93, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28357226

RESUMO

In most cellular compartments cysteine residues are predominantly reduced. However, in the bacterial periplasm, the ER and the mitochondrial intermembrane space (IMS), sulfhydryl oxidases catalyze the formation of disulfide bonds. Nevertheless, many IMS proteins contain reduced cysteines that participate in binding metal- or heme-cofactors. In this study, we addressed the substrate specificity of the mitochondrial protein oxidation machinery. Dre2 is a cysteine-rich protein that is located in the cytosol. A large fraction of Dre2 bound to the cytosolic side of the outer membrane of mitochondria. Even when Dre2 is artificially targeted to the IMS, its cysteine residues remain in the reduced state. This indicates that protein oxidation in the IMS of mitochondria is not a consequence of the apparent oxidizing environment in this compartment but rather is substrate-specific and determined by the presence of Mia40-binding sites.

10.
Antioxid Redox Signal ; 18(13): 1597-612, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23198688

RESUMO

AIMS: To identify yeast mutants that show a strong redox dependence of the ability to respire, we systematically screened a yeast deletion library for mutants that require the presence of reductants for growth on nonfermentable carbon sources. RESULTS: Respirative growth of 44 yeast mutants was significantly improved by the addition of dithiothreitol or glutathione. Two mutants that were strongly stimulated by reductants lacked the proteins Cmc1 and Coa4. Both proteins belong to the family of "twin Cx(9)C" proteins present in the intermembrane space of mitochondria. Deletion of CMC1 or COA4 leads to assembly defects of cytochrome c oxidase, in particular to the lack of Cox1 and rapid degradation of Cox2 and Cox3. Interestingly, the presence of the reductants does not suppress these assembly defects and the levels of cytochrome c oxidase remain reduced. Reductants and antioxidants such as ascorbic acid rather counteract the effects of hydrogen peroxide that is produced from partially assembled cytochrome c oxidase intermediates. INNOVATION: Here we show that oxidative stress generated by the accumulation of partially assembled respiratory chain complexes prevents growth on carbon sources that force cells to respire. CONCLUSION: Defects in the assembly of cytochrome c oxidase can lead to increased production of hydrogen peroxide, which is sensed in cells and blocks their proliferation. We propose that this redox-regulated feedback regulation specifically slows down the propagation of cells carrying respiratory chain mutations in order to select for cells of high mitochondrial fitness.


Assuntos
Pontos de Checagem do Ciclo Celular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estresse Oxidativo , Carbono/metabolismo , Catalase/genética , Catalase/metabolismo , Citosol/metabolismo , Metabolismo Energético , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Glicerol/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Substâncias Redutoras/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA