Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276575

RESUMO

The aim of this work is to explore a new library of coordination compounds for medicinal applications. Gallium is known for its various applications in this field. Presently, indium is not particularly important in medicine, but it shares a lot of chemical traits with its above-mentioned lighter companion, gallium, and is also used in radio imaging. These metals are combined with thiosemicarbazones, ligating compounds increasingly known for their biological and pharmaceutical applications. In particular, the few ligands chosen to interact with these hard metal ions share the ideal affinity for a high charge density. Therefore, in this work we describe the synthesis and the characterization of the resulting coordination compounds. The yields of the reactions vary from a minimum of 21% to a maximum of 82%, using a fast and easy procedure. Nuclear Magnetic Resonance (NMR) and Infra Red (IR) spectroscopy, mass spectrometry, elemental analysis, and X-ray Diffraction (XRD) confirm the formation of stable compounds in all cases and a ligand-to-metal 2:1 stoichiometry with both cations. In addition, we further investigated their chemical and biological characteristics, via UV-visible titrations, stability tests, and cytotoxicity and antibiotic assays. The results confirm a strong stability in all explored conditions, which suggests that these compounds are more suitable for radio imaging applications rather than for antitumoral or antimicrobic ones.


Assuntos
Complexos de Coordenação , Gálio , Tiossemicarbazonas , Gálio/farmacologia , Gálio/química , Índio/química , Tiossemicarbazonas/química , Ligantes , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/química
2.
Angew Chem Int Ed Engl ; 63(25): e202401361, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623693

RESUMO

Aminocatalysis is a well-established tool that enables the production of enantioenriched compounds under mild conditions. Its versatility is underscored by its seamless integration with various synthetic approaches. While the combination of aminocatalysis with metal catalysis, photochemistry, and stoichiometric oxidants has been extensively explored, its synergy with electrochemical activation remains largely unexplored. Herein, we present the successful merger of electrochemistry and aminocatalysis to perform SOMO-type transformations, expanding the toolkit for asymmetric electrochemical synthesis. The methodology harnesses electricity to drive the oxidation of catalytically generated enamines, which ultimately partake in enantioselective radical processes, leading to α-alkylated aldehydes. Crucially, mechanistic studies highlight how this electrochemical strategy is enabled by the use of a redox shuttle, 4,4'-dimethoxybiphenyl, to prevent catalyst degradation and furnishing the coveted compounds in good yield and high enantioselectivity.

3.
Chemistry ; 29(43): e202301200, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204016

RESUMO

Organocatalytic asymmetric transformation of common aromatic heterocycles via in situ formation of highly reactive dearomatized ortho-quinodimethane diene species and subsequent [4+2] cycloaddition with suitable dienophiles has become a powerful tool to enter cyclohexane-fused heterocycles. Most of these reactions were previously applied to benzo-fused heterocycles or poorly aromatic rings. Herein, we disclose how previously intractable aromatic imidazole rings, equipped with removable methylidene malononitrile activating handle, could be involved as competent cycloaddends with ß-aryl enals in efficient eliminative [4+2] cycloadditions under mild organocatalytic conditions. This method allowed the efficient and direct preparation of scantly represented 6,7-dihydrobenzo[d]imidazoles with optimal enantio- and regioselectivities. Post-cycloaddition chemical editing provided imidazole-based ring systems with diverse oxidation state and functional groups.

4.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985750

RESUMO

The exploitation of bioactive natural sources to obtain new anticancer agents with novel modes of action may represent an innovative and successful strategy in the field of medicinal chemistry. Many natural products and their chemical analogues have been proposed as starting molecules to synthesise compounds with increased biological potential. In this work, the design, synthesis, and characterisation of a new series of N4,N4-dimethylated thiosemicarbazone Cu(II), Ni(II), and Pt(II) complexes are reported and investigated for their in vitro toxicological profile against a leukaemia cell line (U937). The antiproliferative activity was studied by MTS assay to determine the GI50 value for each compound after 24 h of treatment, while the genotoxic potential was investigated to determine if the complexes could cause DNA damage. In addition, the interaction between the synthesised molecules and DNA was explored by means of spectroscopic techniques, showing that for Pt and Ni derivatives a single mode of action can be postulated, while the Cu analogue behaves differently.


Assuntos
Antineoplásicos , Tiossemicarbazonas , Tiossemicarbazonas/química , DNA , Linhagem Celular , Antineoplásicos/química , Cobre/química
5.
Angew Chem Int Ed Engl ; 62(31): e202303585, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260054

RESUMO

Here, we report a general approach to the synthesis of the difluoroalkyl bicycloalkanes (CF2 -BCAs), as structural surrogates of aryl ketones and ethers. The chemistry is driven by a dihydrobenzoacridine photocatalyst, that engages in a catalytic electron-donor acceptor (EDA) complex, or directly reduces the fluorinated substrate. These two convergent manifolds lead to the generation of the R-CF2 radical, that reacts with the [1.1.1]- or [3.1.1.]-propellane. The method is extremely general, and extendable to complex bioactive molecules (30 examples, up to 87 % yield). The structural features of the CF2 -BCP hybrid bioisostere were investigated by single crystal X-ray. Finally, we synthesised a CF2 -BCP analogue of a Leukotriene A4 hydrolase inhibitor, replacing the original aryl ether motif. In silico docking studies indicated that this new analogue maintains the same arrangement within the enzyme pocket, profiling the use of the CF2 -BCA hybrid bioisostere in medicinal chemistry settings.

6.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886972

RESUMO

We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N')L][PF6]2 containing arene = p-cymene, N,N' = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 µM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Células A549 , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Humanos , Ligantes , Estrutura Molecular , Naftalimidas/farmacologia , Rutênio/farmacologia
7.
Bioorg Chem ; 116: 105388, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670331

RESUMO

Seasonal influenza A and B viruses represent a global concern. Antiviral drugs are crucial to treat severe influenza in high-risk patients and prevent virus spread in case of a pandemic. The emergence of viruses showing drug resistance, in particular for the recently licensed polymerase inhibitor baloxavir marboxil, drives the need for developing alternative antivirals. The endonuclease activity residing in the N-terminal domain of the polymerase acidic protein (PAN) is crucial for viral RNA synthesis and a validated target for drug design. Its function can be impaired by molecules bearing a metal-binding pharmacophore (MBP) able to coordinate the two divalent metal ions in the active site. In the present work, the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold is explored for the inhibition of influenza virus PA endonuclease. The structure-activity relationship was analysed by modifying the substituents on the lipophilic moiety linked to the MBP. The new compounds exhibited nanomolar inhibitory activity in a FRET-based enzymatic assay, and a few compounds (15-17, 21) offered inhibition in the micromolar range, in a cell-based influenza virus polymerase assay. When investigated against a panel of PA-mutant forms, compound 17 was shown to retain full activity against the baloxavir-resistant I38T mutant. This was corroborated by docking studies providing insight into the binding mode of this novel class of PA inhibitors.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Isoindóis/farmacologia , Orthomyxoviridae/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HEK293 , Humanos , Isoindóis/síntese química , Isoindóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Orthomyxoviridae/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
8.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926042

RESUMO

The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.


Assuntos
Aflatoxinas/química , Aflatoxinas/isolamento & purificação , Aspergillus flavus/química , Aflatoxinas/toxicidade , Antifúngicos/farmacologia , Aspergillus/metabolismo , Aspergillus/patogenicidade , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Produtos Agrícolas/microbiologia , Ecossistema , Contaminação de Alimentos/prevenção & controle , Fungos/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Humanos , Micotoxinas/toxicidade , Tiossemicarbazonas/química
9.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578884

RESUMO

The synthesis, photoactivation and biological activity of a new piano-stool Ru(II) complex is herein reported. The peculiarity of this complex is that its monodentate ligand which undergoes the photodissociation is an asymmetric bis-thiocarbohydrazone ligand that possesses a pyridine moiety binding to Ru(II) and the other moiety contains a quinoline that endows the ligand with the capacity of chelating other metal ions. In this way, upon dissociation, the ligand can be released in the form of a metal complex. In this article, the double ability of this new Ru(II) complex to photorelease the ligand and to chelate copper and nickel is explored and confirmed. The biological activity of this compound is studied in cell line A549 revealing that, after irradiation, proliferation inhibition is reached at very low half maximal inhibitory concentration (IC50) values. Further, biological assays reveal that the dinuclear complex containing Ni is internalized in cells.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Hidrazonas/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio/química , Células A549 , Antineoplásicos/química , Complexos de Coordenação/química , Cobre/química , Humanos , Estrutura Molecular , Níquel/química
10.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213072

RESUMO

As key players in biotic stress response of plants, jasmonic acid (JA) and its derivatives cover a specific and prominent role in pathogens-mediated signaling and hence are promising candidates for a sustainable management of phytopathogenic fungi. Recently, JA directed antimicrobial effects on plant pathogens has been suggested, supporting the theory of oxylipins as double gamers in plant-pathogen interaction. Based on these premises, six derivatives (dihydrojasmone and cis-jasmone, two thiosemicarbazonic derivatives and their corresponding complexes with copper) have been evaluated against 13 fungal species affecting various economically important herbaceous and woody crops, such as cereals, grapes and horticultural crops: Phaeoacremonium minimum, Neofusicoccum parvum, Phaeomoniella chlamydospora, Fomitiporia mediterranea, Fusarium poae, F. culmorum, F. graminearum, F. oxysporum f. sp. lactucae,F. sporotrichioides, Aspergillus flavus, Rhizoctonia solani,Sclerotinia spp. and Verticillium dahliae. The biological activity of these compounds was assessed in terms of growth inhibition and, for the two mycotoxigenic species A. flavus and F. sporotrichioides, also in terms of toxin containment. As expected, the inhibitory effect of molecules greatly varied amongst both genera and species; cis-jasmone thiosemicarbazone in particular has shown the wider range of effectiveness. However, our results show that thiosemicarbazones derivatives are more effective than the parent ketones in limiting fungal growth and mycotoxins production, supporting possible applications for the control of pathogenic fungi.


Assuntos
Produtos Agrícolas , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Doenças das Plantas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia
11.
Angew Chem Int Ed Engl ; 59(45): 20055-20064, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32678935

RESUMO

The discovery of chemical methods enabling the construction of carbocycle-fused uracils which embody a three-dimensional and functional-group-rich architecture is a useful tool in medicinal chemistry oriented synthesis. In this work, an unprecedented amine-catalyzed [4+2] cross-cycloaddition is documented; it involves remotely enolizable 6-methyluracil-5-carbaldehydes and ß-aryl enals, and chemoselectively produces two novel bicyclic and tricyclic fused uracil chemotypes in good yields with a maximum level of enantiocontrol. In-depth mechanistic investigations and control experiments support an intriguing homo-synergistic organocatalytic approach, where the same amine organocatalyst concomitantly engages both aldehyde partners in a stepwise eliminative [4+2] cycloaddition, whose vinylogous iminium ion intermediate product may diverge-depending upon conditions-to either bicyclic targets by hydrolysis or tricyclic products by a second homo-synergistic trienamine-mediated stepwise [4+2] cycloaddition.

12.
Angew Chem Int Ed Engl ; 59(3): 1302-1312, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31660691

RESUMO

Twelve naphthochromenone photocatalysts (PCs) were synthesized on gram scale. They absorb across the UV/Vis range and feature an extremely wide redox window (up to 3.22 eV) that is accessible using simple visible light irradiation sources (CFL or LED). Their excited-state redox potentials, PC*/PC.- (up to 1.65 V) and PC.+ /PC* (up to -1.77 V vs. SCE), are such that these novel PCs can engage in both oxidative and reductive quenching mechanisms with strong thermodynamic requirements. The potential of these bimodal PCs was benchmarked in synthetically relevant photocatalytic processes with extreme thermodynamic requirements. Their ability to efficiently catalyze mechanistically opposite oxidative/reductive photoreactions is a unique feature of these organic photocatalysts, thus representing a decisive advance towards generality, sustainability, and cost efficiency in photocatalysis.

13.
Molecules ; 24(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426298

RESUMO

Amongst the various approaches to contain aflatoxin contamination of feed and food commodities, the use of inhibitors of fungal growth and/or toxin biosynthesis is showing great promise for the implementation or the replacement of conventional pesticide-based strategies. Several inhibition mechanisms were found taking place at different levels in the biology of the aflatoxin-producing fungal species such as Aspergillus flavus: compounds that influence aflatoxin production may block the biosynthetic pathway through the direct control of genes belonging to the aflatoxin gene cluster, or interfere with one or more of the several steps involved in the aflatoxin metabolism upstream. Recent findings pointed to mitochondrial functionality as one of the potential targets of some aflatoxin inhibitors. Additionally, we have recently reported that the effect of a compound belonging to the class of thiosemicarbazones might be related to the energy generation/carbon flow and redox homeostasis control by the fungal cell. Here, we report our investigation about a putative molecular target of the 3-isopropylbenzaldehyde thiosemicarbazone (mHtcum), using the yeast Saccharomyces cerevisiae as model system, to demonstrate how the compound can actually interfere with the mitochondrial respiratory chain.


Assuntos
Aflatoxinas/antagonistas & inibidores , Antifúngicos/farmacologia , Regulação Fúngica da Expressão Gênica , Mitocôndrias/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Aflatoxinas/biossíntese , Antifúngicos/química , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Sítios de Ligação , Transporte de Elétrons/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Família Multigênica , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Tiossemicarbazonas/química
14.
Appl Microbiol Biotechnol ; 101(17): 6683-6696, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28725928

RESUMO

Aspergillus flavus is an opportunistic mold that represents a serious threat for human and animal health due to its ability to synthesize and release, on food and feed commodities, different toxic secondary metabolites. Among them, aflatoxin B1 is one of the most dangerous since it is provided with a strong cancerogenic and mutagenic activity. Controlling fungal contamination on the different crops that may host A. flavus is considered a priority by sanitary authorities of an increasing number of countries due also to the fact that, owing to global temperature increase, the geographic areas that are expected to be prone to experience sudden A. flavus outbreaks are widening. Among the different pre- and post-harvest strategies that may be put forward in order to prevent fungal and/or mycotoxin contamination, fungicides are still considered a prominent weapon. We have here analyzed different structural modifications of a natural-derived compound (cuminaldehyde thiosemicarbazone) for their fungistatic and anti-aflatoxigenic activity. In particular, we have focused our attention on one of the compound that presented a prominent anti-aflatoxin specificity, and performed a set of physiological and molecular analyses, taking also advantage of yeast (Saccharomyces cerevisiae) cell as an experimental model.


Assuntos
Aflatoxina B1/biossíntese , Aspergillus flavus/metabolismo , Benzaldeídos/química , Tiossemicarbazonas/química , Aspergillus flavus/genética , Produtos Agrícolas , Cimenos , Regulação Fúngica da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Chemistry ; 22(36): 12637-40, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27348410

RESUMO

An unprecedented technique for the in situ generation of indolyl ortho-quinodimethanes from 2-methylindole-based methylenemalononitriles by amine-mediated remote C(sp(3) )-H deprotonation was developed. These intermediates were efficiently trapped by diverse enals to provide a rapid entry to 2,9-dihydro-1H-carbazole-3-carboxyaldehyde structures through a formal asymmetric [4+2] eliminative cycloaddition governed by a α,α-diphenylprolinol trimethylsilyl ether catalyst.

16.
Chemistry ; 21(17): 6433-42, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25735832

RESUMO

The first example of catalytic, enantioselective hypervinylogous Mukaiyama aldol reaction (HVMAR) involving multiply unsaturated 2-silyloxyindoles is reported. The reaction utilizes a chiral Lewis base-catalyzed Lewis acid-mediated technology to deliver homoallylic 3-polyenylidene 2-oxindoles with extraordinary levels of regio-, enantio-, and geometrical selectivity. This work highlights a subtle yet decisive influence of the indole N-substituents on the propagation of the vinylogous reactivity space of the donor substrates up to ten bonds away from the origin of the vinylogy effect. Analysis of the (13) C NMR chemical shifts of the C-ω remote site within homologous silyloxyindole donors enabled rationalization of the results and easy qualitative prediction of the HVMAR reactivity/inertia toward a given aldehyde acceptor.

17.
Angew Chem Int Ed Engl ; 54(25): 7386-90, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25950770

RESUMO

A direct aminocatalytic synthesis has been developed for the chemo-, regio-, diastereo-, and enantioselective construction of densely substituted polycyclic carbaldehydes containing fused cyclohexadiene rings. The chemistry utilizes, for the first time, remotely enolizable π-extended allylidenemalononitriles as electron-rich 1,3-diene precursors in a direct eliminative [4+2] cycloaddition with both aromatic and aliphatic α,ß-unsaturated aldehydes. The generality of the process is demonstrated by approaching 6,6-, 5,6-, 7,6-, 6,6,6-, and 6,5,6-fused ring systems, as well as biorelevant steroid-like 6,6,6,6,5- and 6,6,6,5,6-rings. A stepwise reaction mechanism for the key [4+2] addition is proposed as a domino bis-vinylogous Michael/Michael/retro-Michael reaction cascade. The utility of the malononitrile moiety as traceless activating group of the dicyano nucleophilic substrates is demonstrated.


Assuntos
Aldeídos/síntese química , Compostos Alílicos/química , Cicloexenos/química , Nitrilas/química , Compostos Policíclicos/síntese química , Aldeídos/química , Compostos Alílicos/síntese química , Catálise , Reação de Cicloadição , Cicloexenos/síntese química , Nitrilas/síntese química , Compostos Policíclicos/química , Estereoisomerismo
18.
J Am Chem Soc ; 136(31): 11107-14, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25032901

RESUMO

Modulation of the complex reactivity of cyclohexenylidene malononitriles using diverse ß-aryl-substituted enals and proper organocatalytic modalities resulted in divergent asymmetric reaction patterns to furnish angularly fused or bridged carbabicyclic frameworks. In particular, use of remotely enolizable dicyanodienes 1, under one-pot sequential amine/NHC catalysis, led to [3 + 2] cycloaddition to afford ε,δ-bonded spiro[4.5]decanone structures 5. Alternatively, modifying the standard amine catalysis by adding a suitable chemical stimulus (p-nitrophenol cocatalyst) switched the reactivity decidedly toward a domino [4 + 2] cycloaddition to afford γ',δ-bonded bicyclo[2.2.2]octane carbaldehydes 8. Products invariably formed in good yields, with rigorous chemo-, regio-, diastereo-, and enantiocontrol. Experimental evidence, including carbon isotope effects measured by (13)C NMR, were indicative of the rate (and stereochemistry) determining step of these transformations and suggested a stepwise mechanism for the [4 + 2] cycloadditive pathway.


Assuntos
Aldeídos/química , Compostos Bicíclicos com Pontes/química , Cicloexenos/química , Nitrilas/química , Catálise , Reação de Cicloadição , Metano/análogos & derivados , Metano/química , Compostos de Espiro/química , Estereoisomerismo , Especificidade por Substrato
19.
Inorg Chem ; 53(17): 9326-35, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25121398

RESUMO

Pt(IV) complexes are usually prepared by oxidation of the corresponding Pt(II) counterparts, typically using hydrogen peroxide or chlorine. A different way to synthesize asymmetrical Pt(IV) compounds is the oxidative chlorination of Pt(II) counterparts with N-chlorosuccinimide. The reaction between cisplatin cis-[PtCl2(NH3)2], carboplatin, cis-[PtCl2(dach)] and cis-[Pt(cbdc)(dach)] (cbdc = cyclobutane-1,1'-dicarboxylato; dach = cyclohexane-1R,2R-diamine) with N-chlorosuccinimide in ethane-1,2-diol was optimized to produce the asymmetric Pt(IV) octahedral complexes [PtA2Cl(glyc)X2] (A2 = 2 NH3 or dach; glyc = 2-hydroxyethanolato; X2 = 2 Cl or cbdc) in high yield and purity. The X-ray crystal structure of the [Pt(cbdc)Cl(dach)(glyc)] complex is also reported. Moreover, the oxidation method proved to be versatile enough to produce other mixed Pt(IV) derivatives varying the reaction medium. The two trichlorido complexes easily undergo a pH-dependent hydrolysis reaction, whereas the dicarboxylato compounds are stable enough to allow further coupling reactions for drug targeting and delivery via the glyc reactive pendant. Therefore, the coupling reaction between the [Pt(cbdc)Cl(dach)(glyc)] and a model carboxylic acid, a model amine, and selectively protected amino acids is reported.


Assuntos
Cloro/química , Compostos de Platina/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
20.
Org Biomol Chem ; 12(10): 1561-9, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24425043

RESUMO

A stereodivergent plan is presented leading to all eight stereoisomers of oseltamivir carboxylate (OC). Key chemical manoeuvers are (1) a three-component vinylogous Mukaiyama-Mannich reaction, which sets the whole carbon skeleton and heteroatom substituents, and (2) an intramolecular, silylative Mukaiyama aldol reaction, which creates the targeted carbocycle. The viability of the plan was demonstrated by the first total synthesis of 4-epi-oseltamivir carboxylate (6), accessed in 15 steps from glyceraldehyde, o-anisidine and pyrrole siloxydiene precursors. Compound 6 inhibits influenza A virus strains H1N1 and H3N2 at the µM level, about 150 000-fold less than the OC reference, testifying that the stereodisposition of the C4 acetamido function is key for enzyme recognition. Guided by in-depth structural evaluation including NMR solution studies, molecular mechanics simulations, docking analyses and X-ray crystallography, rationalization of the biological verdict was established.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Oseltamivir/análogos & derivados , Antivirais/síntese química , Antivirais/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Oseltamivir/síntese química , Oseltamivir/química , Oseltamivir/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA