Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 808
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 384(24): 2283-2294, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34133859

RESUMO

BACKGROUND: Targeted temperature management is recommended for patients after cardiac arrest, but the supporting evidence is of low certainty. METHODS: In an open-label trial with blinded assessment of outcomes, we randomly assigned 1900 adults with coma who had had an out-of-hospital cardiac arrest of presumed cardiac or unknown cause to undergo targeted hypothermia at 33°C, followed by controlled rewarming, or targeted normothermia with early treatment of fever (body temperature, ≥37.8°C). The primary outcome was death from any cause at 6 months. Secondary outcomes included functional outcome at 6 months as assessed with the modified Rankin scale. Prespecified subgroups were defined according to sex, age, initial cardiac rhythm, time to return of spontaneous circulation, and presence or absence of shock on admission. Prespecified adverse events were pneumonia, sepsis, bleeding, arrhythmia resulting in hemodynamic compromise, and skin complications related to the temperature management device. RESULTS: A total of 1850 patients were evaluated for the primary outcome. At 6 months, 465 of 925 patients (50%) in the hypothermia group had died, as compared with 446 of 925 (48%) in the normothermia group (relative risk with hypothermia, 1.04; 95% confidence interval [CI], 0.94 to 1.14; P = 0.37). Of the 1747 patients in whom the functional outcome was assessed, 488 of 881 (55%) in the hypothermia group had moderately severe disability or worse (modified Rankin scale score ≥4), as compared with 479 of 866 (55%) in the normothermia group (relative risk with hypothermia, 1.00; 95% CI, 0.92 to 1.09). Outcomes were consistent in the prespecified subgroups. Arrhythmia resulting in hemodynamic compromise was more common in the hypothermia group than in the normothermia group (24% vs. 17%, P<0.001). The incidence of other adverse events did not differ significantly between the two groups. CONCLUSIONS: In patients with coma after out-of-hospital cardiac arrest, targeted hypothermia did not lead to a lower incidence of death by 6 months than targeted normothermia. (Funded by the Swedish Research Council and others; TTM2 ClinicalTrials.gov number, NCT02908308.).


Assuntos
Febre/terapia , Hipotermia Induzida , Parada Cardíaca Extra-Hospitalar/terapia , Idoso , Temperatura Corporal , Reanimação Cardiopulmonar/métodos , Coma/etiologia , Coma/terapia , Feminino , Febre/etiologia , Humanos , Hipotermia Induzida/efeitos adversos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/complicações , Parada Cardíaca Extra-Hospitalar/mortalidade , Método Simples-Cego , Resultado do Tratamento
2.
Eur Respir J ; 63(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38387998

RESUMO

This statement outlines a review of the literature and current practice concerning the prevalence, clinical significance, diagnosis and management of dyspnoea in critically ill, mechanically ventilated adult patients. It covers the definition, pathophysiology, epidemiology, short- and middle-term impact, detection and quantification, and prevention and treatment of dyspnoea. It represents a collaboration of the European Respiratory Society and the European Society of Intensive Care Medicine. Dyspnoea ranks among the most distressing experiences that human beings can endure. Approximately 40% of patients undergoing invasive mechanical ventilation in the intensive care unit (ICU) report dyspnoea, with an average intensity of 45 mm on a visual analogue scale from 0 to 100 mm. Although it shares many similarities with pain, dyspnoea can be far worse than pain in that it summons a primal fear response. As such, it merits universal and specific consideration. Dyspnoea must be identified, prevented and relieved in every patient. In the ICU, mechanically ventilated patients are at high risk of experiencing breathing difficulties because of their physiological status and, in some instances, because of mechanical ventilation itself. At the same time, mechanically ventilated patients have barriers to signalling their distress. Addressing this major clinical challenge mandates teaching and training, and involves ICU caregivers and patients. This is even more important because, as opposed to pain which has become a universal healthcare concern, very little attention has been paid to the identification and management of respiratory suffering in mechanically ventilated ICU patients.


Assuntos
Dispneia , Respiração Artificial , Adulto , Humanos , Respiração Artificial/efeitos adversos , Dispneia/terapia , Dispneia/etiologia , Unidades de Terapia Intensiva , Cuidados Críticos , Dor , Estado Terminal
3.
Crit Care ; 28(1): 177, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796447

RESUMO

The use of transpulmonary pressure monitoring based on measurement of esophageal pressure has contributed importantly to the personalization of mechanical ventilation based on respiratory pathophysiology in critically ill patients. However, esophageal pressure monitoring is still underused in the clinical practice. This technique allows partitioning of the respiratory mechanics between the lungs and the chest wall, provides information on lung recruitment and risk of barotrauma, and helps titrating mechanical ventilation settings in patients with respiratory failure. In assisted ventilation modes and during non-invasive respiratory support, esophageal pressure monitoring provides important information on the inspiratory effort and work of breathing. Nonetheless, several controversies persist on technical aspects, interpretation and clinical decision-making based on values derived from this monitoring technique. The aim of this review is to summarize the physiological bases of esophageal pressure monitoring, discussing the pros and cons of its clinical applications and different interpretations in critically ill patients undergoing invasive and non-invasive respiratory support.


Assuntos
Estado Terminal , Humanos , Estado Terminal/terapia , Monitorização Fisiológica/métodos , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia
4.
J Biomed Inform ; 156: 104667, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848885

RESUMO

OBJECTIVES: Candidemia is the most frequent invasive fungal disease and the fourth most frequent bloodstream infection in hospitalized patients. Its optimal management is crucial for improving patients' survival. The quality of candidemia management can be assessed with the EQUAL Candida Score. The objective of this work is to support its automatic calculation by extracting central venous catheter-related information from Italian text in clinical notes of electronic medical records. MATERIALS AND METHODS: The sample includes 4,787 clinical notes of 108 patients hospitalized between January 2018 to December 2020 in the Intensive Care Units of the IRCCS San Martino Polyclinic Hospital in Genoa (Italy). The devised pipeline exploits natural language processing (NLP) to produce numerical representations of clinical notes used as input of machine learning (ML) algorithms to identify CVC presence and removal. It compares the performances of (i) rule-based method, (ii) count-based method together with a ML algorithm, and (iii) a transformers-based model. RESULTS: Results, obtained with three different approaches, were evaluated in terms of weighted F1 Score. The random forest classifier showed the higher performance in both tasks reaching 82.35%. CONCLUSION: The present work constitutes a first step towards the automatic calculation of the EQUAL Candida Score from unstructured daily collected data by combining ML and NLP methods. The automatic calculation of the EQUAL Candida Score could provide crucial real-time feedback on the quality of candidemia management, aimed at further improving patients' health.

5.
J Intensive Care Med ; 39(2): 136-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37563968

RESUMO

Background: Acute respiratory distress syndrome (ARDS) is an important pulmonary complication in brain-injured patients receiving invasive mechanical ventilation (IMV). We aimed to evaluate the incidence and association between ARDS and clinical outcomes in patients with different forms of acute brain injury requiring IMV in the intensive care unit (ICU). Methods: This was a preplanned secondary analysis of a prospective, multicenter, international cohort study (NCT03400904). We included brain-injured patients receiving IMV for ≥ 24 h. ARDS was the main exposure of interest and was identified during index ICU admission using the Berlin definition. We examined the incidence and adjusted association of ARDS with ICU mortality, ICU length of stay, duration of IMV, and extubation failure. Outcomes were evaluated using mixed-effect logistic regression and cause-specific Cox proportional hazards models. Results: 1492 patients from 67 hospitals and 16 countries were included in the analysis, of whom 137 individuals developed ARDS (9.2% of overall cohort). Across countries, the median ARDS incidence was 5.1% (interquartile range [IQR] 0-10; range 0-27.3). ARDS was associated with increased ICU mortality (adjusted odds ratio (OR) 2.66; 95% confidence interval [CI], 1.29-5.48), longer ICU length of stay (adjusted hazard ratio [HR] 0.59; 95% CI, 0.48-0.73), and longer duration of IMV (adjusted HR 0.54; 95% CI, 0.44-0.67). The association between ARDS and extubation failure approached statistical significance (adjusted HR 1.48; 95% CI 0.99-2.21). Higher ARDS severity was associated with incrementally longer ICU length of stay and longer cumulative duration of IMV. Findings remained robust in a sensitivity analysis evaluating the magnitude of unmeasured confounding. Conclusions: In this cohort of acutely brain-injured patients, the incidence of ARDS was similar to that reported in other mixed cohorts of critically ill patients. Development of ARDS was associated with worse outcomes.


Assuntos
Ventilação não Invasiva , Síndrome do Desconforto Respiratório , Humanos , Encéfalo , Estudos de Coortes , Incidência , Unidades de Terapia Intensiva , Estudos Prospectivos , Respiração Artificial , Síndrome do Desconforto Respiratório/epidemiologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia
6.
Am J Respir Crit Care Med ; 208(3): 270-279, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192445

RESUMO

Rationale: Noninvasive respiratory support using a high-flow nasal cannula (HFNC) or noninvasive positive pressure ventilation (NIPPV) can decrease the risk of reintubation in patients being liberated from mechanical ventilation, but effects in patients with acute brain injury (ABI) are unknown. Objectives: To evaluate the association between postextubation noninvasive respiratory support and reintubation in patients with ABI being liberated from mechanical ventilation. Methods: This was a secondary analysis of a prospective, observational study of mechanically ventilated patients with ABI (clinicaltrials.gov identifier NCT03400904). The primary endpoint was reintubation during ICU admission. We used mixed-effects logistic regression models with patient-level covariates and random intercepts for hospital and country to evaluate the association between prophylactic (i.e., planned) HFNC or NIPPV and reintubation. Measurements and Main Results: 1,115 patients were included from 62 hospitals and 19 countries, of whom 267 received HFNC or NIPPV following extubation (23.9%). Compared with conventional oxygen therapy, neither prophylactic HFNC nor NIPPV was associated with decreased odds of reintubation (respectively, odds ratios of 0.97 [95% confidence interval, 0.54-1.73] and 0.63 [0.30-1.32]). Findings remained consistent in sensitivity analyses accounting for alternate adjustment procedures, missing data, shorter time frames of the primary endpoint, and competing risks precluding reintubation. In a Bayesian analysis using skeptical and data-driven priors, the probabilities of reduced reintubation ranged from 17% to 34% for HFNC and from 46% to 74% for NIPPV. Conclusions: In a large cohort of brain-injured patients undergoing liberation from mechanical ventilation, prophylactic use of HFNC and NIPPV were not associated with reintubation. Prospective trials are needed to confirm treatment effects in this population. Primary study registered with www.clinicaltrials.gov (NCT03400904).


Assuntos
Lesões Encefálicas , Ventilação não Invasiva , Insuficiência Respiratória , Humanos , Respiração Artificial , Extubação , Teorema de Bayes , Estudos Prospectivos , Oxigenoterapia/métodos , Cânula , Lesões Encefálicas/complicações , Lesões Encefálicas/terapia , Encéfalo , Insuficiência Respiratória/terapia
7.
Am J Respir Crit Care Med ; 208(7): 770-779, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552556

RESUMO

Rationale: Supplemental oxygen is widely administered to ICU patients, but appropriate oxygenation targets remain unclear. Objectives: This study aimed to determine whether a low-oxygenation strategy would lower 28-day mortality compared with a high-oxygenation strategy. Methods: This randomized multicenter trial included mechanically ventilated ICU patients with an expected ventilation duration of at least 24 hours. Patients were randomized 1:1 to a low-oxygenation (PaO2, 55-80 mm Hg; or oxygen saturation as measured by pulse oximetry, 91-94%) or high-oxygenation (PaO2, 110-150 mm Hg; or oxygen saturation as measured by pulse oximetry, 96-100%) target until ICU discharge or 28 days after randomization, whichever came first. The primary outcome was 28-day mortality. The study was stopped prematurely because of the COVID-19 pandemic when 664 of the planned 1,512 patients were included. Measurements and Main Results: Between November 2018 and November 2021, a total of 664 patients were included in the trial: 335 in the low-oxygenation group and 329 in the high-oxygenation group. The median achieved PaO2 was 75 mm Hg (interquartile range, 70-84) and 115 mm Hg (interquartile range, 100-129) in the low- and high-oxygenation groups, respectively. At Day 28, 129 (38.5%) and 114 (34.7%) patients had died in the low- and high-oxygenation groups, respectively (risk ratio, 1.11; 95% confidence interval, 0.9-1.4; P = 0.30). At least one serious adverse event was reported in 12 (3.6%) and 17 (5.2%) patients in the low- and high-oxygenation groups, respectively. Conclusions: Among mechanically ventilated ICU patients with an expected mechanical ventilation duration of at least 24 hours, using a low-oxygenation strategy did not result in a reduction of 28-day mortality compared with a high-oxygenation strategy. Clinical trial registered with the National Trial Register and the International Clinical Trials Registry Platform (NTR7376).


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/terapia , Cuidados Críticos , Oximetria , Unidades de Terapia Intensiva , Respiração Artificial
8.
Neurocrit Care ; 40(2): 515-528, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37322325

RESUMO

BACKGROUND: In acute brain injury (ABI), the effects of hypoxemia as a potential cause of secondary brain damage and poor outcome are well documented, whereas the impact of hyperoxemia is unclear. The primary aim of this study was to assess the episodes of hypoxemia and hyperoxemia in patients with ABI during the intensive care unit (ICU) stay and to determine their association with in-hospital mortality. The secondary aim was to identify the optimal thresholds of arterial partial pressure of oxygen (PaO2) predicting in-hospital mortality. METHODS: We conducted a secondary analysis of a prospective multicenter observational cohort study. Adult patients with ABI (traumatic brain injury, subarachnoid aneurysmal hemorrhage, intracranial hemorrhage, ischemic stroke) with available data on PaO2 during the ICU stay were included. Hypoxemia was defined as PaO2 < 80 mm Hg, normoxemia was defined as PaO2 between 80 and 120 mm Hg, mild/moderate hyperoxemia was defined as PaO2 between 121 and 299 mm Hg, and severe hyperoxemia was defined as PaO2 levels ≥ 300 mm Hg. RESULTS: A total of 1,407 patients were included in this study. The mean age was 52 (±18) years, and 929 (66%) were male. Over the ICU stay, the fractions of patients in the study cohort who had at least one episode of hypoxemia, mild/moderate hyperoxemia, and severe hyperoxemia were 31.3%, 53.0%, and 1.7%, respectively. PaO2 values below 92 mm Hg and above 156 mm Hg were associated with an increased probability of in-hospital mortality. Differences were observed among subgroups of patients with ABI, with consistent effects only seen in patients without traumatic brain injury. CONCLUSIONS: In patients with ABI, hypoxemia and mild/moderate hyperoxemia were relatively frequent. Hypoxemia and hyperoxemia during ICU stay may influence in-hospital mortality. However, the small number of oxygen values collected represents a major limitation of the study.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Hiperóxia , Hemorragia Subaracnóidea , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Hiperóxia/etiologia , Estudos Prospectivos , Estudos Retrospectivos , Hipóxia/etiologia , Oxigênio , Lesões Encefálicas/complicações , Hemorragia Subaracnóidea/complicações , Lesões Encefálicas Traumáticas/complicações , Encéfalo
9.
J Clin Monit Comput ; 38(1): 165-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37453007

RESUMO

Patients with acute brain injury (ABI) often require the application of positive end-expiratory pressure (PEEP) to optimize mechanical ventilation and systemic oxygenation. However, the effect of PEEP on cerebral function and metabolism is unclear. The primary aim of this study was to evaluate the effects of PEEP augmentation test (from 5 to 15 cmH2O) on brain oxygenation, systemic oxygen cascade and metabolism in ABI patients. Secondary aims include to determine whether changes in regional cerebral oxygenation are reflected by changes in oxygenation cascade and metabolism, and to assess the correlation between brain oxygenation and mechanical ventilation settings. Single center, pilot cross-sectional observational study in an Academic Hospital. Inclusion criteria were: adult (> 18 y/o) patients with ABI and stable intracranial pressure, available gas exchange and indirect calorimetry (IC) monitoring. Cerebral oxygenation was monitored with near-infrared spectroscopy (NIRS) and different derived parameters were collected: variation (Δ) in oxy (O2)-hemoglobin (Hb) (ΔO2Hbi), deoxy-Hb(ΔHHbi), total-Hb(ΔcHbi), and total regional oxygenation (ΔrSO2). Oxygen cascade and metabolism were monitored with arterial/venous blood gas analysis [arterial partial pressure of oxygen (PaO2), arterial saturation of oxygen (SaO2), oxygen delivery (DO2), and lactate], and IC [energy expenditure (REE), respiratory quotient (RQ), oxygen consumption (VO2), and carbon dioxide production (VCO2)]. Data were measured at PEEP 5 cmH2O and 15 cmH2O and expressed as delta (Δ) values. Ten patients with ABI [median age 70 (IQR 62-75) years, 6 (60%) were male, median Glasgow Coma Scale at ICU admission 5.5 (IQR 3-8)] were included. PEEP augmentation from 5 to 15 cmH2O did not affect cerebral oxygenation, systemic oxygen cascade parameters, and metabolism. The arterial component of cerebral oxygenation was significantly correlated with DO2 (ΔO2HBi, rho = 0.717, p = 0.037). ΔrSO2 (rho = 0.727, p = 0.032), ΔcHbi (rho = 0.797, p = 0.013), and ΔHHBi (rho = 0.816, p = 0.009) were significantly correlated with SaO2, but not ΔO2Hbi. ΔrSO2 was significantly correlated with VCO2 (rho = 0.681, p = 0.049). No correlation between brain oxygenation and ventilatory parameters was found. PEEP augmentation test did not affect cerebral and systemic oxygenation or metabolism. Changes in cerebral oxygenation significantly correlated with DO2, SaO2, and VCO2. Cerebral oxygen monitoring could be considered for individualization of mechanical ventilation setting in ABI patients without high or instable intracranial pressure.


Assuntos
Oxigênio , Respiração com Pressão Positiva , Adulto , Humanos , Masculino , Idoso , Feminino , Estudos Transversais , Oxigênio/metabolismo , Respiração com Pressão Positiva/métodos , Pulmão/metabolismo , Encéfalo/metabolismo , Hemoglobinas
10.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34897488

RESUMO

Pheromonal communication is widespread among living organisms, but in apes and particularly in humans there is currently no strong evidence for such phenomenon. Among primates, lemurs use pheromones to communicate within members of the same species, whereas in some monkeys such capabilities seem to be lost. Chemical communication in humans appears to be impaired by the lack or malfunctioning of biochemical tools and anatomical structures mediating detection of pheromones. Here, we report on a pheromone-carrier protein (SAL) adopting a "reverse chemical ecology" approach to get insights on the structures of potential pheromones in a representative species of lemurs (Microcebus murinus) known to use pheromones, Old-World monkeys (Cercocebus atys) for which chemical communication has been observed, and humans (Homo sapiens), where pheromones and chemical communication are still questioned. We have expressed the SAL orthologous proteins of these primate species, after reconstructing the gene encoding the human SAL, which is disrupted due to a single base mutation preventing its translation into RNA. Ligand-binding experiments with the recombinant SALs revealed macrocyclic ketones and lactones as the best ligands for all three proteins, suggesting cyclopentadecanone, pentadecanolide, and closely related compounds as the best candidates for potential pheromones. Such hypothesis agrees with the presence of a chemical very similar to hexadecanolide in the gland secretions of Mandrillus sphinx, a species closely related to C. atys. Our results indicate that the function of this carrier protein has not changed much during evolution from lemurs to humans, although its physiological role has been certainly impaired in humans.


Assuntos
Lemur , Feromônios , Animais , Ecologia , Humanos , Feromônios/metabolismo , Primatas/genética , Primatas/metabolismo
11.
PLoS Pathog ; 17(4): e1009448, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861802

RESUMO

The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5-20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19. Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and "memory" KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells. Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches.


Assuntos
COVID-19/imunologia , Células Matadoras Naturais/imunologia , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , Estudos de Coortes , Feminino , Citometria de Fluxo/métodos , Humanos , Interferon gama/metabolismo , Itália/epidemiologia , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
12.
Respir Res ; 24(1): 146, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259054

RESUMO

BACKGROUND: Acute brain injured (ABI) patients are at high risk of developing ventilator-associated pneumonia (VAP). However, incidence, risk factors and effects on outcome of VAP are not completely elucidated in this population. The primary aim of this study was to determine the incidence of VAP in a cohort of ABI patients. The secondary objectives included the identification of risk factors for development of VAP, and the impact of VAP on clinical outcomes. Clinical outcomes were defined as intensive care unit length of stay (ICU-LOS), duration of invasive mechanical ventilation (IMV), and ICU mortality. METHODS: Pre-planned sub-analysis of the Extubation strategies in Neuro-Intensive care unit (ICU) patients and associations with Outcomes (ENIO) international multi-center prospective observational study. Patients with available data on VAP, who received at least 48 h of IMV and ICU-LOS ≥ 72 h were included. RESULTS: Out of 1512 patients included in the ENIO study, 1285 were eligible for this analysis. The prevalence of VAP was 39.5% (33.7 cases /1000 ventilator-days), with a high heterogeneity across countries and according to the type of brain injury. VAP was significantly more frequent in male patients, in those with smoke habits and when intraparenchymal probe (IP), external ventricular drain (EVD) or hypothermia (p < 0.001) were used. Independent risk factors for VAP occurrence were male gender, the use of IP, hypothermia, and the occurrence of tracheobronchitis during ICU stay. VAP was not an independent risk factor for ICU mortality (Hazard Ratio, HR = 0.71 95%CI 0.43-1.16, p = 0.168), but was independently associated with longer ICU stay (OR = 2.55 95%CI 2.01-3.23, p < 0.001). CONCLUSIONS: VAP is common in ABI patients. Male gender, IP and EVD insertion, tracheobronchitis, and the use of therapeutic hypothermia were significantly associated with VAP occurrence. VAP did not affect mortality but increased ICU-LOS.


Assuntos
Bronquite , Hipotermia , Pneumonia Associada à Ventilação Mecânica , Humanos , Masculino , Feminino , Pneumonia Associada à Ventilação Mecânica/diagnóstico , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Hipotermia/complicações , Respiração Artificial/efeitos adversos , Estudos Prospectivos , Ventiladores Mecânicos/efeitos adversos
13.
Anesthesiology ; 139(3): 249-261, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224406

RESUMO

BACKGROUND: Superobesity and laparoscopic surgery promote negative end-expiratory transpulmonary pressure that causes atelectasis formation and impaired respiratory mechanics. The authors hypothesized that end-expiratory transpulmonary pressure differs between fixed and individualized positive end-expiratory pressure (PEEP) strategies and mediates their effects on respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters in superobese patients. METHODS: In this prospective, nonrandomized crossover study including 40 superobese patients (body mass index 57.3 ± 6.4 kg/m2) undergoing laparoscopic bariatric surgery, PEEP was set according to (1) a fixed level of 8 cm H2O (PEEPEmpirical), (2) the highest respiratory system compliance (PEEPCompliance), or (3) an end-expiratory transpulmonary pressure targeting 0 cm H2O (PEEPTranspul) at different surgical positioning. The primary endpoint was end-expiratory transpulmonary pressure at different surgical positioning; secondary endpoints were respiratory mechanics, end-expiratory lung volume, gas exchange, and hemodynamic parameters. RESULTS: Individualized PEEPCompliance compared to fixed PEEPEmpirical resulted in higher PEEP (supine, 17.2 ± 2.4 vs. 8.0 ± 0.0 cm H2O; supine with pneumoperitoneum, 21.5 ± 2.5 vs. 8.0 ± 0.0 cm H2O; and beach chair with pneumoperitoneum; 15.8 ± 2.5 vs. 8.0 ± 0.0 cm H2O; P < 0.001 each) and less negative end-expiratory transpulmonary pressure (supine, -2.9 ± 2.0 vs. -10.6 ± 2.6 cm H2O; supine with pneumoperitoneum, -2.9 ± 2.0 vs. -14.1 ± 3.7 cm H2O; and beach chair with pneumoperitoneum, -2.8 ± 2.2 vs. -9.2 ± 3.7 cm H2O; P < 0.001 each). Titrated PEEP, end-expiratory transpulmonary pressure, and lung volume were lower with PEEPCompliance compared to PEEPTranspul (P < 0.001 each). Respiratory system and transpulmonary driving pressure and mechanical power normalized to respiratory system compliance were reduced using PEEPCompliance compared to PEEPTranspul. CONCLUSIONS: In superobese patients undergoing laparoscopic surgery, individualized PEEPCompliance may provide a feasible compromise regarding end-expiratory transpulmonary pressures compared to PEEPEmpirical and PEEPTranspul, because PEEPCompliance with slightly negative end-expiratory transpulmonary pressures improved respiratory mechanics, lung volumes, and oxygenation while preserving cardiac output.


Assuntos
Laparoscopia , Pneumoperitônio , Humanos , Estudos Cross-Over , Estudos Prospectivos , Respiração com Pressão Positiva , Mecânica Respiratória , Volume de Ventilação Pulmonar
14.
Anesthesiology ; 138(4): 420-435, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571572

RESUMO

BACKGROUND: Gradually changing respiratory rate (RR) during time to reduce ventilation-induced lung injury has not been investigated. The authors hypothesized that gradual, compared with abrupt, increments in RR would mitigate ventilation-induced lung injury and that recruitment maneuver before abruptly increasing RR may prevent injurious biologic impact. METHODS: Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, 49 male Wistar rats were anesthetized and mechanically ventilated (tidal volume, 6 ml/kg; positive end-expiratory pressure, 3 cm H2O) with RR increase patterns as follows (n = 7 per group): (1) control 1, RR = 70 breaths/min for 2 h; (2) and (3) abrupt increases of RR for 1 and 2 h, respectively, both for 2 h; (4) shorter RR adaptation, gradually increasing RR (from 70 to 130 breaths/min during 30 min); (5) longer RR adaptation, more gradual increase in RR (from 70 to 130 breaths/min during 60 min), both for 2 h; (6) control 2, abrupt increase of RR maintained for 1 h; and (7) control 3, recruitment maneuver (continuous positive airway pressure, 30 cm H2O for 30 s) followed by control-2 protocol. RESULTS: At the end of 1 h of mechanical ventilation, cumulative diffuse alveolar damage scores were lower in shorter (11.0 [8.0 to 12.0]) and longer (13.0 [11.0 to 14.0]) RR adaptation groups than in animals with abrupt increase of RR for 1 h (25.0 [22.0 to 26.0], P = 0.035 and P = 0.048, respectively) and 2 h (35.0 [32.0 to 39.0], P = 0.003 and P = 0.040, respectively); mechanical power and lung heterogeneity were lower, and alveolar integrity was higher, in the longer RR adaptation group compared with abruptly adjusted groups; markers of lung inflammation (interleukin-6), epithelial (club cell secretory protein [CC-16]) and endothelial cell damage (vascular cell adhesion molecule 1 [VCAM-1]) were higher in both abrupt groups, but not in either RR adaptation group, compared with controls. Recruitment maneuver prevented the increase in VCAM-1 and CC-16 gene expressions in the abruptly increased RR groups. CONCLUSIONS: In mild experimental acute respiratory distress syndrome in rats, gradually increasing RR, compared with abruptly doing so, can mitigate the development of ventilation-induced lung injury. In addition, recruitment maneuver prevented the injurious biologic impact of abrupt increases in RR.


Assuntos
Produtos Biológicos , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Ratos , Masculino , Animais , Ratos Wistar , Taxa Respiratória , Molécula 1 de Adesão de Célula Vascular , Síndrome do Desconforto Respiratório/prevenção & controle , Pressão Positiva Contínua nas Vias Aéreas
15.
Crit Care ; 27(1): 13, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635711

RESUMO

To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.


Assuntos
Lesões Encefálicas Traumáticas , Hipóxia Encefálica , Humanos , Hipóxia Encefálica/etiologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Encéfalo , Oxigênio/uso terapêutico , Hipóxia/complicações , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia
16.
Crit Care ; 27(1): 221, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280579

RESUMO

OBJECTIVE: To describe the potential effects of ventilatory strategies on the outcome of acute brain-injured patients undergoing invasive mechanical ventilation. DESIGN: Systematic review with an individual data meta-analysis. SETTING: Observational and interventional (before/after) studies published up to August 22nd, 2022, were considered for inclusion. We investigated the effects of low tidal volume Vt < 8 ml/Kg of IBW versus Vt > = 8 ml/Kg of IBW, positive end-expiratory pressure (PEEP) < or > = 5 cmH2O and protective ventilation (association of both) on relevant clinical outcomes. POPULATION: Patients with acute brain injury (trauma or haemorrhagic stroke) with invasive mechanical ventilation for ≥ 24 h. MAIN OUTCOME MEASURES: The primary outcome was mortality at 28 days or in-hospital mortality. Secondary outcomes were the incidence of acute respiratory distress syndrome (ARDS), the duration of mechanical ventilation and the partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio. RESULTS: The meta-analysis included eight studies with a total of 5639 patients. There was no difference in mortality between low and high tidal volume [Odds Ratio, OR 0.88 (95%Confidence Interval, CI 0.74 to 1.05), p = 0.16, I2 = 20%], low and moderate to high PEEP [OR 0.8 (95% CI 0.59 to 1.07), p = 0.13, I2 = 80%] or protective and non-protective ventilation [OR 1.03 (95% CI 0.93 to 1.15), p = 0.6, I2 = 11]. Low tidal volume [OR 0.74 (95% CI 0.45 to 1.21, p = 0.23, I2 = 88%], moderate PEEP [OR 0.98 (95% CI 0.76 to 1.26), p = 0.9, I2 = 21%] or protective ventilation [OR 1.22 (95% CI 0.94 to 1.58), p = 0.13, I2 = 22%] did not affect the incidence of acute respiratory distress syndrome. Protective ventilation improved the PaO2/FiO2 ratio in the first five days of mechanical ventilation (p < 0.01). CONCLUSIONS: Low tidal volume, moderate to high PEEP, or protective ventilation were not associated with mortality and lower incidence of ARDS in patients with acute brain injury undergoing invasive mechanical ventilation. However, protective ventilation improved oxygenation and could be safely considered in this setting. The exact role of ventilatory management on the outcome of patients with a severe brain injury needs to be more accurately delineated.


Assuntos
Lesões Encefálicas , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial , Volume de Ventilação Pulmonar , Síndrome do Desconforto Respiratório/terapia , Oxigênio , Lesões Encefálicas/terapia
17.
Crit Care ; 27(1): 156, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081474

RESUMO

BACKGROUND: There is insufficient evidence to guide ventilatory targets in acute brain injury (ABI). Recent studies have shown associations between mechanical power (MP) and mortality in critical care populations. We aimed to describe MP in ventilated patients with ABI, and evaluate associations between MP and clinical outcomes. METHODS: In this preplanned, secondary analysis of a prospective, multi-center, observational cohort study (ENIO, NCT03400904), we included adult patients with ABI (Glasgow Coma Scale ≤ 12 before intubation) who required mechanical ventilation (MV) ≥ 24 h. Using multivariable log binomial regressions, we separately assessed associations between MP on hospital day (HD)1, HD3, HD7 and clinical outcomes: hospital mortality, need for reintubation, tracheostomy placement, and development of acute respiratory distress syndrome (ARDS). RESULTS: We included 1217 patients (mean age 51.2 years [SD 18.1], 66% male, mean body mass index [BMI] 26.3 [SD 5.18]) hospitalized at 62 intensive care units in 18 countries. Hospital mortality was 11% (n = 139), 44% (n = 536) were extubated by HD7 of which 20% (107/536) required reintubation, 28% (n = 340) underwent tracheostomy placement, and 9% (n = 114) developed ARDS. The median MP on HD1, HD3, and HD7 was 11.9 J/min [IQR 9.2-15.1], 13 J/min [IQR 10-17], and 14 J/min [IQR 11-20], respectively. MP was overall higher in patients with ARDS, especially those with higher ARDS severity. After controlling for same-day pressure of arterial oxygen/fraction of inspired oxygen (P/F ratio), BMI, and neurological severity, MP at HD1, HD3, and HD7 was independently associated with hospital mortality, reintubation and tracheostomy placement. The adjusted relative risk (aRR) was greater at higher MP, and strongest for: mortality on HD1 (compared to the HD1 median MP 11.9 J/min, aRR at 17 J/min was 1.22, 95% CI 1.14-1.30) and HD3 (1.38, 95% CI 1.23-1.53), reintubation on HD1 (1.64; 95% CI 1.57-1.72), and tracheostomy on HD7 (1.53; 95%CI 1.18-1.99). MP was associated with the development of moderate-severe ARDS on HD1 (2.07; 95% CI 1.56-2.78) and HD3 (1.76; 95% CI 1.41-2.22). CONCLUSIONS: Exposure to high MP during the first week of MV is associated with poor clinical outcomes in ABI, independent of P/F ratio and neurological severity. Potential benefits of optimizing ventilator settings to limit MP warrant further investigation.


Assuntos
Lesões Encefálicas , Síndrome do Desconforto Respiratório , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Extubação , Estudos Prospectivos , Respiração Artificial/efeitos adversos , Cuidados Críticos , Unidades de Terapia Intensiva , Lesões Encefálicas/terapia , Lesões Encefálicas/etiologia , Encéfalo , Oxigênio
18.
Crit Care ; 27(1): 132, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005666

RESUMO

BACKGROUND: Stroke patients requiring mechanical ventilation often have a poor prognosis. The optimal timing of tracheostomy and its impact on mortality in stroke patients remains uncertain. We performed a systematic review and meta-analysis of tracheostomy timing and its association with reported all-cause overall mortality. Secondary outcomes were the effect of tracheostomy timing on neurological outcome (modified Rankin Scale, mRS), hospital length of stay (LOS), and intensive care unit (ICU) LOS. METHODS: We searched 5 databases for entries related to acute stroke and tracheostomy from inception to 25 November 2022. We adhered to PRISMA guidance for reporting systematic reviews and meta-analyses. Selected studies included (1) ICU-admitted patients who had stroke (either acute ischaemic stroke, AIS or intracerebral haemorrhage, ICH) and received a tracheostomy (with known timing) during their stay and (2) > 20 tracheotomised. Studies primarily reporting sub-arachnoid haemorrhage (SAH) were excluded. Where this was not possible, adjusted meta-analysis and meta-regression with study-level moderators were performed. Tracheostomy timing was analysed continuously and categorically, where early (< 5 days from initiation of mechanical ventilation to tracheostomy) and late (> 10 days) timing was defined per the protocol of SETPOINT2, the largest and most recent randomised controlled trial on tracheostomy timing in stroke patients. RESULTS: Thirteen studies involving 17,346 patients (mean age = 59.8 years, female 44%) met the inclusion criteria. ICH, AIS, and SAH comprised 83%, 12%, and 5% of known strokes, respectively. The mean time to tracheostomy was 9.7 days. Overall reported all-cause mortality (adjusted for follow-up) was 15.7%. One in five patients had good neurological outcome (mRS 0-3; median follow-up duration was 180 days). Overall, patients were ventilated for approximately 12 days and had an ICU LOS of 16 days and a hospital LOS of 28 days. A meta-regression analysis using tracheostomy time as a continuous variable showed no statistically significant association between tracheostomy timing and mortality (ß = - 0.3, 95% CI = - 2.3 to 1.74, p = 0.8). Early tracheostomy conferred no mortality benefit when compared to late tracheostomy (7.8% vs. 16.4%, p = 0.7). Tracheostomy timing was not associated with secondary outcomes (good neurological outcome, ICU LOS and hospital LOS). CONCLUSIONS: In this meta-analysis of over 17,000 critically ill stroke patients, the timing of tracheostomy was not associated with mortality, neurological outcomes, or ICU/hospital LOS. TRIAL REGISTRATION: PROSPERO-CRD42022351732 registered on 17th of August 2022.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Feminino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/cirurgia , Estado Terminal , Hemorragia Cerebral , Cuidados Críticos , Unidades de Terapia Intensiva , Respiração Artificial , Tempo de Internação
19.
Crit Care ; 27(1): 138, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041553

RESUMO

BACKGROUND: There is very limited evidence identifying factors that increase respiratory drive in hypoxemic intubated patients. Most physiological determinants of respiratory drive cannot be directly assessed at the bedside (e.g., neural inputs from chemo- or mechano-receptors), but clinical risk factors commonly measured in intubated patients could be correlated with increased drive. We aimed to identify clinical risk factors independently associated with increased respiratory drive in intubated hypoxemic patients. METHODS: We analyzed the physiological dataset from a multicenter trial on intubated hypoxemic patients on pressure support (PS). Patients with simultaneous assessment of the inspiratory drop in airway pressure at 0.1-s during an occlusion (P0.1) and risk factors for increased respiratory drive on day 1 were included. We evaluated the independent correlation of the following clinical risk factors for increased drive with P0.1: severity of lung injury (unilateral vs. bilateral pulmonary infiltrates, PaO2/FiO2, ventilatory ratio); arterial blood gases (PaO2, PaCO2 and pHa); sedation (RASS score and drug type); SOFA score; arterial lactate; ventilation settings (PEEP, level of PS, addition of sigh breaths). RESULTS: Two-hundred seventeen patients were included. Clinical risk factors independently correlated with higher P0.1 were bilateral infiltrates (increase ratio [IR] 1.233, 95%CI 1.047-1.451, p = 0.012); lower PaO2/FiO2 (IR 0.998, 95%CI 0.997-0.999, p = 0.004); higher ventilatory ratio (IR 1.538, 95%CI 1.267-1.867, p < 0.001); lower pHa (IR 0.104, 95%CI 0.024-0.464, p = 0.003). Higher PEEP was correlated with lower P0.1 (IR 0.951, 95%CI 0.921-0.982, p = 0.002), while sedation depth and drugs were not associated with P0.1. CONCLUSIONS: Independent clinical risk factors for higher respiratory drive in intubated hypoxemic patients include the extent of lung edema and of ventilation-perfusion mismatch, lower pHa, and lower PEEP, while sedation strategy does not affect drive. These data underline the multifactorial nature of increased respiratory drive.


Assuntos
Respiração com Pressão Positiva , Respiração Artificial , Humanos , Respiração com Pressão Positiva/efeitos adversos , Respiração , Pulmão , Fatores de Risco
20.
Crit Care ; 27(1): 60, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788582

RESUMO

BACKGROUND: Pseudomonas aeruginosa pneumonia is commonly treated with systemic antibiotics to ensure adequate treatment of multidrug resistant (MDR) bacteria. However, intravenous (IV) antibiotics often achieve suboptimal pulmonary concentrations. We therefore aimed to evaluate the effect of inhaled amikacin (AMK) plus IV meropenem (MEM) on bactericidal efficacy in a swine model of monolateral MDR P. aeruginosa pneumonia. METHODS: We ventilated 18 pigs with monolateral MDR P. aeruginosa pneumonia for up to 102 h. At 24 h after the bacterial challenge, the animals were randomized to receive 72 h of treatment with either inhaled saline (control), IV MEM only, or IV-MEM plus inhaled AMK (MEM + AMK). We dosed IV MEM at 25 mg/kg every 8 h and inhaled AMK at 400 mg every 12 h. The primary outcomes were the P. aeruginosa burden and histopathological injury in lung tissue. Secondary outcomes included the P. aeruginosa burden in tracheal secretions and bronchoalveolar lavage fluid, the development of antibiotic resistance, the antibiotic distribution, and the levels of inflammatory markers. RESULTS: The median (25-75th percentile) P. aeruginosa lung burden for animals in the control, MEM only, and MEM + AMK groups was 2.91 (1.75-5.69), 0.72 (0.12-3.35), and 0.90 (0-4.55) log10 CFU/g (p = 0.009). Inhaled therapy had no effect on preventing dissemination compared to systemic monotherapy, but it did have significantly higher bactericidal efficacy in tracheal secretions only. Remarkably, the minimum inhibitory concentration of MEM increased to > 32 mg/L after 72-h exposure to monotherapy in 83% of animals, while the addition of AMK prevented this increase (p = 0.037). Adjunctive therapy also slightly affected interleukin-1ß downregulation. Despite finding high AMK concentrations in pulmonary samples, we found no paired differences in the epithelial lining fluid concentration between infected and non-infected lungs. Finally, a non-significant trend was observed for higher amikacin penetration in low-affected lung areas. CONCLUSIONS: In a swine model of monolateral MDR P. aeruginosa pneumonia, resistant to the inhaled AMK and susceptible to the IV antibiotic, the use of AMK as an adjuvant treatment offered no benefits for either the colonization of pulmonary tissue or the prevention of pathogen dissemination. However, inhaled AMK improved bacterial eradication in the proximal airways and hindered antibiotic resistance.


Assuntos
Pneumonia , Infecções por Pseudomonas , Animais , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Modelos Teóricos , Pneumonia/tratamento farmacológico , Pseudomonas aeruginosa , Infecções por Pseudomonas/tratamento farmacológico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA