Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Synapse ; 75(6): e22193, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33141999

RESUMO

In the aging process, the brain presents biochemical and morphological alterations. The neurons of the limbic system show reduced size dendrites, in addition to the loss of dendritic spines. These disturbances trigger a decrease in motor and cognitive function. Likewise, it is reported that during aging, in the brain, there is a significant decrease in neurotrophic factors, which are essential in promoting the survival and plasticity of neurons. The carboxyl-terminal fragment of the heavy chain of the tetanus toxin (Hc-TeTx) acts similarly to neurotrophic factors, inducing neuroprotection in different models of neuronal damage. The aim here, was to evaluate the effect of Hc-TeTx on the motor processes of elderly mice (18 months old), and its impact on the dendritic morphology and density of dendritic spines of neurons in the limbic system. The morphological analysis in the dendrites was evaluated employing Golgi-Cox staining. Hc-TeTx was administered (0.5 mg/kg) intraperitoneally for three days in 18-month-old mice. Locomotor activity was evaluated in a novel environment 30 days after the last administration of Hc-TeTx. Mice treated with Hc-TeTx showed significant changes in their motor behavior, and an increased dendritic spine density of pyramidal neurons in layers 3 and 5 of the prefrontal cortex in the hippocampus, and medium spiny neurons of the nucleus accumbens (NAcc). In conclusion, the Hc-TeTx improves the plasticity of the brain regions of the limbic system of aged mice. Therefore, it is proposed as a pharmacological alternative to prevent or delay brain damage during aging.


Assuntos
Neurônios , Toxina Tetânica , Animais , Dendritos/metabolismo , Hipocampo/metabolismo , Sistema Límbico/metabolismo , Camundongos , Atividade Motora , Neurônios/metabolismo , Toxina Tetânica/metabolismo , Toxina Tetânica/farmacologia , Toxina Tetânica/uso terapêutico
2.
Synapse ; 75(2): e22185, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32779216

RESUMO

Aging is a complex process that can lead to neurodegeneration and, consequently, several pathologies, including dementia. Physiological aging leads to changes in several body organs, including those of the central nervous system (CNS). Morphological changes in the CNS and particularly the brain result in motor and cognitive deficits affecting learning and memory and the circadian cycle. Characterizing neural modifications is critical to designing new therapies to target aging and associated pathologies. In this review, we compared aging to the changes occurring within the brain and particularly the limbic system. Then, we focused on key natural compounds, apamin, cerebrolysin, Curcuma longa, resveratrol, and N-PEP-12, which have shown neurotrophic effects particularly in the limbic system. Finally, we drew our conclusions delineating future perspectives for the development of novel natural therapeutics to ameliorate aging-related processes.


Assuntos
Envelhecimento/efeitos dos fármacos , Sistema Límbico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Envelhecimento/metabolismo , Aminoácidos/farmacologia , Animais , Apamina/farmacologia , Curcuma , Sistema Límbico/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Extratos Vegetais/farmacologia , Ratos , Resveratrol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA