Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chemistry ; 28(61): e202201931, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-35920047

RESUMO

The ambitious goal of artificial photosynthesis is to develop active systems that mimic nature and use light to split water into hydrogen and oxygen. Intramolecular design concepts are particularly promising. Herein, we firstly present an intramolecular photocatalyst integrating a perylene-based light-harvesting moiety and a catalytic rhodium center (RhIII phenPer). The excited-state dynamics were investigated by means of steady-state and time-resolved absorption and emission spectroscopy. The studies reveal that photoexcitation of RhIII phenPer yields the formation of a charge-separated intermediate, namely RhII phenPer⋅+ , that results in a catalytically active species in the presence of protons.


Assuntos
Perileno , Ródio , Perileno/química , Niacinamida , Ródio/química , Fotossíntese , Catálise
2.
Chemistry ; 27(12): 4081-4088, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33241590

RESUMO

In this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation. In the presence of poly(dehydroalanine)-graft-poly(ethylene glycol) graft copolymers as solubilizing template, the chromophores are capable of sensitizing [Mo3 S13 ]2- clusters in aqueous solution for stable visible light driven hydrogen evolution over three days.

3.
Langmuir ; 37(37): 11018-11026, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34506143

RESUMO

Supramolecular dye structures, which are often ruled by π-π interactions between planar chromophores, crucially determine the optoelectronic properties of layers and interfaces. Here, we present the interfacial assembly of perylene monoanhydride and monoimide that do not feature a planar chromophore but contain chlorine substituents in the bay positions to yield twisted chromophores and hence modified π-stacking. The assembly of the twisted perylene monoanhydride and monoimide is driven by their amphiphilicity that ensures proper Langmuir layer formation. The shielding of the hydrophilic segment upon attaching an alkyl chain to the imide moiety yielded a more rigid Langmuir layer, even though the degrees of freedom were increased due to this modification. For the characterization of the Langmuir layer's supramolecular structure, the layers were deposited onto glass, silver, and gold substrates via Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and were investigated with atomic force microscopy and surface-enhanced resonance Raman spectroscopy (SERRS). From the similarity between all SERR spectra of the LS and LB layers, we concluded that the perylenes have changed their orientation upon LB deposition to bind to the silver surface of the SERRS substrate via sulfur atoms. In the Langmuir layer, the perylenes, which are π-stacked with half of the twisted chromophores, must already be inclined and cannot achieve full parallel alignment because of the twisting-induced steric hindrance. However, upon rotation, the energetically most favorable antiparallel aligned structures can be formed and bind to the SERRS substrate. Thus, we present, to the best of our knowledge, the first fabrication of quasi-two-dimensional films from twisted amphiphilic perylene monoimides and their reassembly during LB deposition. The relation between the molecular structure, supramolecular interfacial assembly, and its adoption during adsorption revealed here is crucial for the fabrication of defined functionalizations of metal surfaces, which is key to the development of organic (opto)electronic devices.

4.
Macromol Rapid Commun ; 42(8): e2000580, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274813

RESUMO

This report highlights the importance of hydrophobic groups mimicking the side chains of aromatic amino acids, which are tryptophan, phenylalanine, and tyrosine, in guanidinium bearing poly(methacrylamide)s for the design of non-viral gene delivery agents. Guanidinium containing methacrylamide terpolymers are prepared by aqueous reversible addition-fragmentation chain transfer (aRAFT) polymerization with different hydrophobic monomers, N-(2-indolethyl)methacrylamide (IEMA), N-phenethylmethacrylamide (PhEMA), or N-(4-hydroxyphenethyl)methacrylamide (PhOHEMA) by aiming similar contents. The well-defined polymers are obtained with a molar mass of ≈15 000 g mol-1 and ≈1.1 dispersity. All terpolymers demonstrate almost comparable in vitro cell viability and hemocompatibility profiles independent of the type of side chain. Although they all form positively charged, enzymatically stable polyplexes with plasmid DNA smaller than 200 nm, the incorporation of the IEMA monomer improve these parameters by demonstrating a higher DNA binding affinity and forming nanoassemblies of about 100 nm. These physicochemical characteristics are correlated with increased transfection rates in CHO-K1 cells dependent on the type of the monomer and the nitrogen to phosphate (N/P) ratio of the polyplexes, as determined by luciferase reporter gene assays.


Assuntos
Acrilamidas , Fenol , Técnicas de Transferência de Genes , Guanidina , Indóis , Transfecção
5.
Beilstein J Org Chem ; 17: 2496-2504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646398

RESUMO

The self-healing behavior of two supramolecular polymers based on π-π-interactions featuring different polymer backbones is presented. For this purpose, these polymers were synthesized utilizing a polycondensation of a perylene tetracarboxylic dianhydride with polyether-based diamines and the resulting materials were investigated using various analytical techniques. Thus, the molecular structure of the polymers could be correlated with the ability for self-healing. Moreover, the mechanical behavior was studied using rheology. The activation of the supramolecular interactions results in a breaking of these noncovalent bonds, which was investigated using IR spectroscopy, leading to a sufficient increase in mobility and, finally, a healing of the mechanical damage. This scratch-healing behavior was also quantified in detail using an indenter.

6.
Macromol Rapid Commun ; 41(6): e1900668, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32077146

RESUMO

A highly efficient transfection agent is reported that is based on terpolymer consisting of N-(2-hydroxypropyl)methacrylamide (HPMA), N-(3-guanidinopropyl) methacrylamide (GPMA), and N-(2-indolethyl)methacrylamide monomers (IEMA) by analogy to the amphipathic cell-penetrating peptides containing tryptophan and arginine residues. The incorporation of the indole-bearing monomer leads to successful plasmid DNA condensation even at a nitrogen-to-phosphate (N/P) ratio of 1. The hydrodynamic diameter of polyplexes is determined to be below 200 nm for all N/P ratios. The transfection studies demonstrate a 200-fold increase of the transgene expression in comparison to P(HPMA-co-GPMA) with the same guanidinium content. This study reveals the strong potential of the indole group as a side-chain pendant group that can increase the cellular uptake of polymers and the transfection efficiency of the respective polyplexes.


Assuntos
Resinas Acrílicas/química , Guanidina/química , Guanidinas/química , Indóis/química , Polímeros/química , Transfecção , Acrilamidas/química , Animais , Sobrevivência Celular , Fibroblastos , Camundongos
7.
Biomacromolecules ; 20(12): 4389-4406, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31686497

RESUMO

Despite the first successful applications of nonviral delivery vectors for small interfering RNA in the treatment of illnesses, such as the respiratory syncytial virus infection, the preparation of a clinically suitable, safe, and efficient delivery system still remains a challenge. In this study, we tackle the drawbacks of the existing systems by a combined experimental-computational in-depth investigation of the influence of the polymer architecture over the binding and transfection efficiency. For that purpose, a library of diblock copolymers with a molar mass of 30 kDa and a narrow dispersity (D < 1.12) was synthesized. We studied in detail the impact of an altered block size and/or composition of cationic diblock copolymers on the viability of each respective structure as a delivery agent for polynucleotides. The experimental investigation was further complemented by a computational study employing molecular simulations as well as an analytical description of systemic properties. This is the first report in which molecular dynamics simulations of RNA/cationic polymer complexes have been performed. Specifically, we developed and employed a coarse-grained model of the system at the molecular level to study the interactions between polymer chains and small interfering RNA. We were further able to confirm a threshold lengthbinding block/lengthnonbinding block ratio, which is required for efficient complexation of siRNA, and it was possible to find a correlation between the length of the cationic block and the size of the resulting polyplex. Hence, the combined insights from the experiments and the theoretical investigation resulted in a wealth of information about the properties of cationic diblock copolymers employed as RNA delivery agents, in particular regarding the molecular and mechanistic details of the interaction between the two components of a polyplex.


Assuntos
Simulação por Computador , Sistemas de Liberação de Medicamentos , Modelos Químicos , RNA Interferente Pequeno , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/farmacologia
8.
Biochim Biophys Acta ; 1858(9): 2028-2034, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27237727

RESUMO

Cell-penetrating peptides (CPPs) are short membrane-permeating amino acid sequences that can be used to deliver cargoes, e.g. drugs, into cells. The mechanism for CPP internalization is still subject of ongoing research. An interesting family of CPPs is the sweet arrow peptides - SAP(E) - which are known to adopt a polyproline II helical secondary structure. SAP(E) peptides stand out among CPPs because they carry a net negative charge while most CPPs are positively charged, the latter being conducive to electrostatic interaction with generally negatively charged membranes. For SAP(E)s, an internalization mechanism has been proposed, based on polypeptide aggregation on the cell surface, followed by an endocytic uptake. However, this process has not yet been observed directly - since peptide-membrane interactions are inherently difficult to monitor on a molecular scale. Here, we use sum frequency generation (SFG) vibrational spectroscopy to investigate molecular interactions of SAP(E) with differently charged model membranes, in both mono- and bi-layer configurations. The data suggest that the initial binding mechanism is accompanied by structural changes of the peptide. Also, the peptide-model membrane interaction depends on the charge of the lipid headgroup with phosphocholine being a favorable binding site. Moreover, while direct penetration has also been observed for some CPPs, the spectroscopy reveals that for SAP(E), its interaction with model membranes remains limited to the headgroup region, and insertion into the hydrophobic core of the lipid layer does not occur.


Assuntos
Peptídeos Penetradores de Células/química , Bicamadas Lipídicas/química , Modelos Químicos , Peptídeos/química , Estrutura Secundária de Proteína , Eletricidade Estática
9.
Chembiochem ; 18(18): 1814-1818, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28704573

RESUMO

Cyanine (Cy) dyes show a general propensity to localize in polarized mitochondria. This mitochondriotropism was used to perform a copper-free click reaction in the mitochondria of living cells. The in organello reaction of dyes Cy3 and Cy5 led to a product that was easily traceable by Förster resonance energy transfer (FRET). As determined by confocal laser scanning microscopy, the Cy3-Cy5 conjugate showed enhanced retention in mitochondria, relative to that of the starting compounds. This enhancement of a favorable property can be achieved by synthesis in organello, but not outside mitochondria.


Assuntos
Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Mitocôndrias/metabolismo , Animais , Carbocianinas/química , Linhagem Celular , Química Click , Cobre/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Microscopia Confocal , Ratos
10.
J Am Chem Soc ; 138(9): 2881-4, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26891229

RESUMO

Biocompatible organic dyes emitting in the near-infrared are highly desirable in fluorescence imaging techniques. Herein we report a synthetic approach for building novel small peri-guanidine-fused naphthalene monoimide and perylene monoimide chromophores. The presented structures possess near-infrared absorption and emission, high photostability, and good water solubility. After a fast cellular uptake, they selectively stain mitochondria with a low background in live and fixed cells. They can be additionally modified in a one-step reaction with functional groups for covalent labeling of proteins. The low cytotoxicity allows a long time exposure of live cells to the dyes without the necessity of washing. Successful application in localization super-resolution microscopy was demonstrated in phosphate-buffered saline without any reducing or oxidizing additives.


Assuntos
Corantes/química , Mitocôndrias/química , Perileno/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Coloração e Rotulagem/métodos , Animais , Chlorocebus aethiops , Corantes/síntese química , Guanidina/química , Células HeLa , Humanos , Imidas/química , Células MCF-7 , Naftalenos/química , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA