Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Am Chem Soc ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255382

RESUMO

In this first systematic investigation of mechanochemical polyoxometalate (POM) reduction, (TBA)3[PMo12O40] was reacted with n equiv of lithium metal (n = 1-24) to generate PMo12/n products which were shown to be mixtures of electron-rich PMo12Lix species. FTIR analysis revealed the lengthening/weakening of terminal Mo═O bonds with increasing levels of reduction, while EXAFS spectra indicated the onset of Mo-Mo bond formation at n ∼ 8 and a significant structural change at n > 12. Successive MoVI reductions were monitored by XANES and XPS, and at n = 24, results were consistent with the formation of at least one MoIV-MoIV bonded {MoIV3} triad together with MoV. Upon dissolution, the PMo12Lix species present in the solid PMo12/n products undergo electron exchange and single-peak 31P NMR spectra were observed for n = 1-12. For n ≥ 16, changes in solid state and solution 31P NMR spectra coincided with the emergence of features in the UV-vis spectra associated with MoV-MoV and {MoIV3} bonding in an ε-Keggin structure. Bonding between {Li(NCMe)}+ and 2-electron-reduced PMo12 in (TBA)4[PMo12O40{Li(NCMe)}] suggests that super-reduction gives rise to more extensive Li-O bonding that ultimately causes lithium-oxide-promoted TBA cation decomposition and POM degradation, which might explain the appearance of XPS peaks for Mo2C at n ≥ 16. This work has revealed some of the complex, unexplored chemistry of super-reduced POMs and establishes a new, solvent-free approach in the search for a better fundamental understanding of the electronic properties and reactivity of electron-rich nanoscale metal oxides.

2.
J Synchrotron Radiat ; 31(Pt 5): 1276-1284, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088400

RESUMO

Accurate analysis of the rich information contained within X-ray spectra usually calls for detailed electronic structure theory simulations. However, density functional theory (DFT), time-dependent DFT and many-body perturbation theory calculations increasingly require the use of advanced codes running on high-performance computing (HPC) facilities. Consequently, many researchers who would like to augment their experimental work with such simulations are hampered by the compounding of nontrivial knowledge requirements, specialist training and significant time investment. To this end, we present Web-CONEXS, an intuitive graphical web application for democratizing electronic structure theory simulations. Web-CONEXS generates and submits simulation workflows for theoretical X-ray absorption and X-ray emission spectroscopy to a remote computing cluster. In the present form, Web-CONEXS interfaces with three software packages: ORCA, FDMNES and Quantum ESPRESSO, and an extensive materials database courtesy of the Materials Project API. These software packages have been selected to model diverse materials and properties. Web-CONEXS has been conceived with the novice user in mind; job submission is limited to a subset of simulation parameters. This ensures that much of the simulation complexity is lifted and preliminary theoretical results are generated faster. Web-CONEXS can be leveraged to support beam time proposals and serve as a platform for preliminary analysis of experimental data.

3.
Phys Chem Chem Phys ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264269

RESUMO

The performance of a machine learning (ML) algorithm for chemistry is highly contingent upon the architect's choice of input representation. This work introduces the partial density of states (p-DOS) descriptor: a novel, quantum-inspired structural representation which encodes relevant electronic information for machine learning models seeking to simulate X-ray spectroscopy. p-DOS uses a minimal basis set in conjunction with a guess (non-optimised) electronic configuration to extract and then discretise the density of states (DOS) of the absorbing atom to form the input vector. We demonstrate that while the electronically-focused p-DOS performs well in isolation, optimal performance is achieved when supplemented with nuclear structural information imparted via a geometric representation. p-DOS provides a description of the key electronic properties of a system which is not only concise and computationally efficient, but also independent of molecular size or choice of basis set. It can be rapidly generated, facilitating its application with large training sets. Its performance is demonstrated using a wide variety of examples at the sulphur K-edge, including the prediction of ultrafast X-ray spectroscopic signal associated with photoexcited 2(5H)-thiophenone. These results highlight the potential for ML models developed using p-DOS to contribute to the interpretation and prediction of experimental results e.g. in operando measurements of batteries and/or catalysts and femtosecond time-resolved studies, especially those made possible by emergent cutting-edge technologies, especially X-ray free electron lasers.

4.
J Phys Chem A ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287185

RESUMO

Controlling the architecture of organic molecules is an important aspect in tuning the functional properties of components in organic electronics. For purely organic thermally activated delayed fluorescence (TADF) molecules, design is focused upon orthogonality orientated donor and acceptor units. In these systems, the rotational dynamics around the donor and acceptor bond has been shown to be critical for activating TADF; however, too much conformational freedom can increase the non-radiative rate, leading to a large energy dispersion of the emitting states and conformers, which do not exhibit TADF. To date, control of the motion around the D-A bond has focused upon steric hindrance. In this work, we computationally investigate eight proposed donor-acceptor molecules, exhibiting a B-N bond between the donor and acceptor. We compare the effect of steric hindrance and noncovalent interactions, achieved using oxygen (sulfur) boron heteroatom interactions, in exerting fine conformational control of the excited state dynamics. This work reveals the potential for judiciously chosen noncovalent interactions to strongly influence the functional properties of TADF emitters, including the accessible conformers and the energy dispersion associated with the charge transfer states.

5.
Phys Chem Chem Phys ; 25(10): 7195-7204, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36820783

RESUMO

Excited state dynamics play a critical role across a broad range of scientific fields. Importantly, the highly non-equilibrium nature of the states generated by photoexcitation means that excited state simulations should usually include an accurate description of the coupled electronic-nuclear motion, which often requires solving the time-dependent Schrödinger equation (TDSE). One of the biggest challenges for these simulations is the requirement to calculate the PES over which the nuclei evolve. An effective approach for addressing this challenge is to use the approximate linear vibronic coupling (LVC) Hamiltonian, which enables a model potential to be parameterised using relatively few quantum chemistry calculations. However, this approach is only valid provided there are no large amplitude motions in the excited state dynamics. In this paper we introduce and deploy a metric, the global anharmonicity parameter (GAP), which can be used to assess the accuracy of an LVC potential. Following its derivation, we illustrate its utility by applying it to three molecules exhibiting different rigidity in their excited states.

6.
Phys Chem Chem Phys ; 25(19): 13325-13334, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37139551

RESUMO

Revolutionary developments in ultrafast light source technology are enabling experimental spectroscopists to probe the structural dynamics of molecules and materials on the femtosecond timescale. The capacity to investigate ultrafast processes afforded by these resources accordingly inspires theoreticians to carry out high-level simulations which facilitate the interpretation of the underlying dynamics probed during these ultrafast experiments. In this Article, we implement a deep neural network (DNN) to convert excited-state molecular dynamics simulations into time-resolved spectroscopic signals. Our DNN is trained on-the-fly from first-principles theoretical data obtained from a set of time-evolving molecular dynamics. The train-test process iterates for each time-step of the dynamics data until the network can predict spectra with sufficient accuracy to replace the computationally intensive quantum chemistry calculations required to produce them, at which point it simulates the time-resolved spectra for longer timescales. The potential of this approach is demonstrated by probing dynamics of the ring opening of 1,2-dithiane using sulphur K-edge X-ray absorption spectroscopy. The benefits of this strategy will be more markedly apparent for simulations of larger systems which will exhibit a more notable computational burden, making this approach applicable to the study of a diverse range of complex chemical dynamics.

7.
Phys Chem Chem Phys ; 24(16): 9156-9167, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35393987

RESUMO

X-ray absorption spectroscopy at the L2/3 edge can be used to obtain detailed information about the local electronic and geometric structure of transition metal complexes. By virtue of the dipole selection rules, the transition metal L2/3 edge usually exhibits two distinct spectral regions: (i) the "white line", which is dominated by bound electronic transitions from metal-centred 2p orbitals into unoccupied orbitals with d character; the intensity and shape of this band consequently reflects the d density of states (d-DOS), which is strongly modulated by mixing with ligand orbitals involved in chemical bonding, and (ii) the post-edge, where oscillations encode the local geometric structure around the X-ray absorption site. In this Article, we extend our recently-developed XANESNET deep neural network (DNN) beyond the K-edge to predict X-ray absorption spectra at the Pt L2/3 edge. We demonstrate that XANESNET is able to predict Pt L2/3 -edge X-ray absorption spectra, including both the parts containing electronic and geometric structural information. The performance of our DNN in practical situations is demonstrated by application to two Pt complexes, and by simulating the transient spectrum of a photoexcited dimeric Pt complex. Our discussion includes an analysis of the feature importance in our DNN which demonstrates the role of key features and assists with interpreting the performance of the network.


Assuntos
Complexos de Coordenação , Elementos de Transição , Complexos de Coordenação/química , Redes Neurais de Computação , Espectroscopia por Absorção de Raios X , Raios X
8.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897859

RESUMO

We performed a time-gated laser-spectroscopy study in a set of heavy-atom free single BODIPY fluorophores, supported by accurate, excited-state computational simulations of the key low-lying excited states in these chromophores. Despite the strong fluorescence of these emitters, we observed a significant fraction of time-delayed (microseconds scale) emission associated with processes that involved passage through the triplet manifold. The accuracy of the predictions of the energy arrangement and electronic nature of the low-lying singlet and triplet excited states meant that an unambiguous assignment of the main deactivation pathways, including thermally activated delayed fluorescence and/or room temperature phosphorescence, was possible. The observation of triplet state formation indicates a breakthrough in the "classic" interpretation of the photophysical properties of the renowned BODIPY and its derivatives.


Assuntos
Compostos de Boro , Corantes Fluorescentes , Compostos de Boro/química , Análise Espectral
9.
Phys Chem Chem Phys ; 23(15): 9259-9269, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885072

RESUMO

Many chemical and biological reactions, including ligand exchange processes, require thermal energy for the reactants to overcome a transition barrier and reach the product state. Temperature-jump (T-jump) spectroscopy uses a near-infrared (NIR) pulse to rapidly heat a sample, offering an approach for triggering these processes and directly accessing thermally-activated pathways. However, thermal activation inherently increases the disorder of the system under study and, as a consequence, can make quantitative interpretations of structural changes challenging. In this Article, we optimise a deep neural network (DNN) for the instantaneous prediction of Co K-edge X-ray absorption near-edge structure (XANES) spectra. We apply our DNN to analyse T-jump pump/X-ray probe data pertaining to the ligand exchange processes and solvation dynamics of Co2+ in chlorinated aqueous solution. Our analysis is greatly facilitated by machine learning, as our DNN is able to predict quickly and cost-effectively the XANES spectra of thousands of geometric configurations sampled from ab initio molecular dynamics (MD) using nothing more than the local geometric environment around the X-ray absorption site. We identify directly the structural changes following the T-jump, which are dominated by sample heating and a commensurate increase in the Debye-Waller factor.

10.
Angew Chem Int Ed Engl ; 60(21): 12066-12073, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33666324

RESUMO

We report the characterization of rotaxanes based on a carbazole-benzophenone thermally activated delayed fluorescence luminophore. We find that the mechanical bond leads to an improvement in key photophysical properties of the emitter, notably an increase in photoluminescence quantum yield and a decrease in the energy difference between singlet and triplet states, as well as fine tuning of the emission wavelength, a feat that is difficult to achieve when using covalently bound substituents. Computational simulations, supported by X-ray crystallography, suggest that this tuning of properties occurs due to weak interactions between the axle and the macrocycle that are enforced by the mechanical bond. This work highlights the benefits of using the mechanical bond to refine existing luminophores, providing a new avenue for emitter optimization that can ultimately increase the performance of these molecules.

11.
Chem Rec ; 20(8): 831-856, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32267093

RESUMO

In this article recent progress in the development of molecules exhibiting Thermally Activated Delayed Fluorescence (TADF) is discussed with a particular focus upon their application as emitters in highly efficient organic light emitting diodes (OLEDs). The key aspects controlling the desirable functional properties, e. g. fast intersystem crossing, high radiative rate and unity quantum yield, are introduced with a particular focus upon the competition between the key requirements needed to achieve high performance OLEDs. The design rules required for organic and metal organic materials are discussed, and the correlation between them outlined. Recent progress towards understanding the influence of the interaction between a molecule and its environment are explained as is the role of the mechanism for excited state formation in OLEDs. Finally, all of these aspects are combined to discuss the ability to implement high level design rules for achieving higher quality materials for commercial applications. This article highlights the significant progress that has been made in recent years, but also outlines the significant challenges which persist to achieve a full understanding of the TADF mechanism and improve the stability and performance of these materials.

12.
Chem Rev ; 118(15): 6975-7025, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-29558159

RESUMO

Intersystem crossing (ISC), formally forbidden within nonrelativistic quantum theory, is the mechanism by which a molecule changes its spin state. It plays an important role in the excited state decay dynamics of many molecular systems and not just those containing heavy elements. In the simplest case, ISC is driven by direct spin-orbit coupling between two states of different multiplicities. This coupling is usually assumed to remain unchanged by vibrational motion. It is also often presumed that spin-allowed radiationless transitions, i.e. internal conversion, and the nonadiabatic coupling that drives them, can be considered separately from ISC and spin-orbit coupling owing to the vastly different time scales upon which these processes are assumed to occur. However, these assumptions are too restrictive. Indeed, the strong mixing brought about by the simultaneous presence of nonadiabatic and spin-orbit coupling means that often the spin, electronic, and vibrational dynamics cannot be described independently. Instead of considering a simple ladder of states, as depicted in a Jablonski diagram, one must consider the more complicated spin-vibronic levels. Despite the basic ideas being outlined in the 1960s, it is only with the advent of high-level theory and femtosecond spectroscopy that the importance of the spin-vibronic mechanism for ISC in both fundamental as well as applied research fields has been revealed with significant impact across chemistry, physics, and biology. In this review article, we present the theory and fundamental principles of the spin-vibronic mechanism for ISC. This is followed by empirical rules to estimate the rate of ISC within this regime. The most recent developments in experimental techniques, theoretical methods, and models for the spin-vibronic mechanism are discussed. These concepts are subsequently illustrated with examples, including the ISC mechanisms in transition metal complexes, small organic molecules, and organic chromophores.

13.
Phys Chem Chem Phys ; 22(8): 4659-4667, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32055809

RESUMO

The excited state properties and intersystem crossing dynamics of a series of donor-bridge-acceptor carbene metal-amides based upon the coinage metals Cu, Ag, Au, are investigated using quantum dynamics simulations and supported by photophysical characterisation. The simulated intersystem rates are consistent with experimental observations making it possible to provide a detailed interpretation of the excited state dynamics which ultimately control their functional properties. It is demonstrated that for all complexes there is a competition between the direct intersystem crossing occurring between the 1CT and 3CT states and indirect pathways which couple to an intermediate locally excited ππ* triplet state (3LE) on either the donor or acceptor ligands. The energy of the 3LE states decreases as the size of the metal decreases meaning that the indirect pathway plays an increasingly important role for the lighter metals. Importantly whenever the direct pathway is efficient, the presence of indirect pathways is detrimental to the overall rate of ISC as they provide a slower alternative pathway. Our results provide a detailed insight into the mechanism of intersystem crossing in these complexes and will greatly facilitate the design of new higher performing molecules.

14.
Molecules ; 25(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545393

RESUMO

An important consideration when developing a deep neural network (DNN) for the prediction of molecular properties is the representation of the chemical space. Herein we explore the effect of the representation on the performance of our DNN engineered to predict Fe K-edge X-ray absorption near-edge structure (XANES) spectra, and address the question: How important is the choice of representation for the local environment around an arbitrary Fe absorption site? Using two popular representations of chemical space-the Coulomb matrix (CM) and pair-distribution/radial distribution curve (RDC)-we investigate the effect that the choice of representation has on the performance of our DNN. While CM and RDC featurisation are demonstrably robust descriptors, it is possible to obtain a smaller mean squared error (MSE) between the target and estimated XANES spectra when using RDC featurisation, and converge to this state a) faster and b) using fewer data samples. This is advantageous for future extension of our DNN to other X-ray absorption edges, and for reoptimisation of our DNN to reproduce results from higher levels of theory. In the latter case, dataset sizes will be limited more strongly by the resource-intensive nature of the underlying theoretical calculations.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Modelos Moleculares , Redes Neurais de Computação , Espectroscopia por Absorção de Raios X
15.
J Comput Chem ; 40(25): 2191-2199, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31140200

RESUMO

Molecules and materials that absorb and/or emit light form a central part of our daily lives. Consequently, a description of their excited-state properties plays a crucial role in designing new molecules and materials with enhanced properties. Due to its favorable balance between high computational efficiency and accuracy, time-dependent density functional theory (TDDFT) is often a method of choice for characterizing these properties. However, within standard approximations to the exchange-correlation functional, it remains challenging to achieve a balanced description of all excited states, especially for those exhibiting charge-transfer (CT) characteristics. In this work, we have applied two approaches, namely, the optimal tuning and triplet tuning methods, for a nonempirical definition of range-separated functionals to improve the description of excited states within TDDFT. This is applied to study the CT properties of two thermally activated delayed fluorescence emitters, namely, PTZ-DBTO2 and TAT-3DBTO2 . We demonstrate the connection between the two methods, the performance of each in the presence on multiple excited states of different characters and the geometry dependence of each method especially relevant in the context of developing size-consistent potential energy surfaces. © 2019 Wiley Periodicals, Inc.

16.
J Chem Phys ; 151(10): 104307, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31521084

RESUMO

Simulation of the ultrafast excited-state dynamics and elastic X-ray scattering of the [Fe(bmip)2]2+ [bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-4-pyridine] complex is presented and analyzed. We employ quantum wavepacket dynamics simulations on a 5-dimensional potential energy surface (PES) calculated by time-dependent density functional theory with 26 coupled diabatic states. The simulations are initiated by explicit inclusion of a time-dependent electromagnetic field. In the case of resonant excitation into singlet metal-to-ligand charge transfer (1MLCT) states, kinetic (exponential) population dynamics are observed with small nuclear motion. In agreement with transient optical absorption spectroscopy experiments, we observe a subpicosecond 1MLCT → 3MLCT intersystem crossing and a subsequent decay into triplet metal-centered (3MC) states on a picosecond time scale. The simulated time-resolved difference scattering signal is dominated by the 3MC component, for which the structural distortions are significant. On the other hand, excitation into 1MC states leads to ballistic (nonexponential) population dynamics with strong nuclear motion. The reason for these ballistic dynamics is that in this case, the excitation occurs into a nonequilibrium region, i.e., far from the minimum of the 1MC PES. This results in wavepacket dynamics along the principal breathing mode, which is clearly visible in both the population dynamics and difference scattering. Finally, the importance of decomposing the difference scattering into components by electronic states is highlighted, information which is not accessible from elastic X-ray scattering experiments.

17.
Inorg Chem ; 57(7): 3825-3832, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29537260

RESUMO

This article describes a convenient method for the synthesis of ONNO-type tetradentate 6,6'-bis(2-phenoxy)-2,2'-bipyridine (bipyridine bisphenolate, BpyBph) ligands and their platinum(II) complexes. The methodology includes the synthesis of 1,2,4-triazine precursors followed by their transformation to functionalized pyridines by the Boger reaction. Two complementary routes employing 3,3'- and 5,5'-bis-triazines allow a modification of the central pyridine rings in different positions, which was exemplified by the introduction of cyclopentene rings. The new ligands were used to prepare highly luminescent ONNO-type Pt(II) complexes. The position of the cyclopentene rings significantly influences the solubility and photophysical properties of these complexes. Derivatives with closely positioned cyclopentene rings are soluble in organic solvents and proved to be the best candidate for solution-processable organic light-emitting devices (OLEDs), showing efficient single-dopant candlelight electroluminescence.

18.
Proc Natl Acad Sci U S A ; 112(42): 12922-7, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438842

RESUMO

Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein's function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼ 200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump-probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center.


Assuntos
Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Análise Espectral/métodos , Cinética , Ligantes
19.
J Am Chem Soc ; 139(21): 7335-7347, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28485597

RESUMO

Ferrous iron(II) hexacyanide in aqueous solutions is known to undergo photoionization and photoaquation reactions depending on the excitation wavelength. To investigate this wavelength dependence, we implemented ultrafast two-dimensional UV transient absorption spectroscopy, covering a range from 280 to 370 nm in both excitation and probing, along with UV pump/visible probe or time-resolved infrared (TRIR) transient absorption spectroscopy and density functional theory (DFT) calculations. As far as photoaquation is concerned, we find that excitation of the molecule leads to ultrafast intramolecular relaxation to the lowest triplet state of the [Fe(CN)6]4- complex, followed by its dissociation into CN- and [Fe(CN)5]3- fragments and partial geminate recombination, all within <0.5 ps. The subsequent time evolution is associated with the [Fe(CN)5]3- fragment going from a triplet square pyramidal geometry, to the lowest triplet trigonal bipyramidal state in 3-4 ps. This is the precursor to aquation, which occurs in ∼20 ps in H2O and D2O solutions, forming the [Fe(CN)5(H2O/D2O)]3- species, although some aquation also occurs during the 3-4 ps time scale. The aquated complex is observed to be stable up to the microsecond time scale. For excitation below 310 nm, the dominant channel is photooxidation with a minor aquation channel. The photoaquation reaction shows no excitation wavelength dependence up to 310 nm, that is, it reflects a Kasha Rule behavior. In contrast, the photooxidation yield increases with decreasing excitation wavelength. The various intermediates that appear in the TRIR experiments are identified with the help of DFT calculations. These results provide a clear example of the energy dependence of various reactive pathways and of the role of spin-states in the reactivity of metal complexes.

20.
Chemistry ; 23(1): 105-113, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859790

RESUMO

A new family of cyclometallated gold(III) thiolato complexes based on pyrazine-centred pincer ligands has been prepared, (C^Npz ^C)AuSR, where C^Npz ^C=2,6-bis(4-But C6 H4 )pyrazine dianion and R=Ph (1), C6 H4 tBu-4 (2), 2-pyridyl (3), 1-naphthyl (1-Np, 4), 2-Np (5), quinolinyl (Quin, 6), 4-methylcoumarinyl (Coum, 7) and 1-adamantyl (8). The complexes were isolated as yellow to red solids in high yields using mild synthetic conditions. The single-crystal X-ray structures revealed that the colour of the deep-red solids is associated with the formation of a particular type of short (3.2-3.3 Å) intermolecular pyrazine⋅⋅⋅pyrazine π-interactions. In some cases, yellow and red crystal polymorphs were formed; only the latter were emissive at room temperature. Combined NMR and UV/Vis techniques showed that the supramolecular π-stacking interactions persist in solution and give rise to intense deep-red photoluminescence. Monomeric molecules show vibronically structured green emissions at low temperature, assigned to ligand-based 3 IL(C^N^C) triplet emissions. By contrast, the unstructured red emissions correlate mainly with a 3 LLCT(SR→{(C^Npz ^C)2 }) charge transfer transition from the thiolate ligand to the π⋅⋅⋅π dimerized pyrazine. Unusually, the π-interactions can be influenced by sample treatment in solution, such that the emissions can switch reversibly from red to green. To our knowledge this is the first report of aggregation-enhanced emission in gold(III) chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA