Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409162, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860443

RESUMO

The application of supramolecular assembly (SA) with room temperature phosphorescence (RTP) in aqueous phase has the potential to revolutionize numerous fields. However, using simple molecules with crystalline RTP to construct SA with aqueous phase RTP is hardly possible from the standpoint of forces. The reason lies in that the transition from crystal to SA involves a structure transformation from highly stable to more dynamic state, leading to increased non-radiative deactivation pathways and silent RTP signal. Here, with the benefit of the confinement from the layered double hydroxide (LDH), various simple molecules (benzene derivatives) can successfully form metastable SA with aqueous phase RTP. The maximum of RTP lifetime and efficiency can reach 654.87 ms and 5.02 %, respectively. Mechanistic studies reveal the LDH energy trap can strengthen the intermolecular interaction, providing the prerequisite for the existence of metastable SA and appearance of aqueous phase RTP. The universality of this strategy will usher exploration into other multifunctional monomer, facilitating the development of SAs with aqueous phase RTP.

2.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110828

RESUMO

Lobophorins (LOBs) are a growing family of spirotetronate natural products with significant cytotoxicity, anti-inflammatory, and antibacterial activities. Herein, we report the transwell-based discovery of Streptomyces sp. CB09030 from a panel of 16 in-house Streptomyces strains, which has significant anti-mycobacterial activity and produces LOB A (1), LOB B (2), and LOB H8 (3). Genome sequencing and bioinformatic analyses revealed the potential biosynthetic gene cluster (BGC) for 1-3, which is highly homologous with the reported BGCs for LOBs. However, the glycosyltransferase LobG1 in S. sp. CB09030 has certain point mutations compared to the reported LobG1. Finally, LOB analogue 4 (O-ß-D-kijanosyl-(1→17)-kijanolide) was obtained through an acid-catalyzed hydrolysis of 2. Compounds 1-4 showed different antibacterial activities against Mycobacterium smegmatis and Bacillus subtilis, which revealed the varying roles of different sugars in their antibacterial activities.


Assuntos
Streptomyces , Streptomyces/química , Macrolídeos/química , Antibacterianos/química , Sequência de Bases , Família Multigênica
3.
Angew Chem Int Ed Engl ; 62(23): e202303063, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37022095

RESUMO

The emergence of time-dependent phosphorescence color (TDPC) materials has taken information encryption to high-security levels. However, due to the only path of exciton transfer, it is almost impossible to obtain TDPC for chromophores with a single emission center. Theoretically, in inorganic-organic composites, the exciton transfer of organic chromophores depends on the inorganic structure. Here, we assign two structural effects to inorganic NaCl by metal (Mg2+ or Ca2+ or Ba2+ ) doping, which triggers the TDPC performance of carbon dots (CDs) with a single emission center. The resulting material is used for multi-level dynamic phosphorescence color 3D coding to achieve information encryption. The structural confinement activates the green phosphorescence of CDs; while the structural defect activates tunneling-related yellow phosphorescence. Such simply doped inorganic matrices can be synthesized using the periodic table of metal cations, endowing chromophores with tremendous control over TDPC properties. This demonstration extends the design view of dynamic luminescent materials.

4.
World J Surg Oncol ; 19(1): 338, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863188

RESUMO

BACKGROUND: Prostate cancer is the most common malignant tumor in men. Due to the lack of theoretical research on its pathogenic mechanism, the current cure rate is still low. miRNAs play an important role in the pathogenesis of various cancers. miRNA-214-5p plays an important role in the development of a variety of cancers. This study aims to explore the expression level of miR-214-5p in prostate cancer and make a preliminary study of its molecular mechanism in the development of prostate cancer to provide effective new strategies for the treatment of prostate cancer. METHODS: The target genes of miRNA-214-5p were predicted with bioinformatics technology, and the target relationship between miRNA-214-5p and its target genes was verified with dual luciferase reporter assay. RT-qPCR and Western blot were used to detect the expression levels of miRNA-214-5p and target genes in 50 clinical samples and two common prostate continuous cell lines, respectively. The targeting relationship between miRNA-214-5p and its target genes was verified with clinical data. miRNA-214-5p and miRNA-214-5p inhibitor was over-expressed in DU-145 cell lines to verify the effect of miRNA-214-5p on prostate cancer cell proliferation and SOX4 gene expression. And the mechanism of miRNA-214-5p inhibiting the proliferation of prostate cancer cells were analyzed by detecting the expression difference of downstream factors of SOX4 pathway. Bioinformatics analysis showed that miRNA-214-5p combined with SOX4 3'UTR region, and dual luciferase reporter assay further verified the reliability of the predicted results. The low expression of miRNA-214-5p was observed in prostate cancer tissues and cells, while high expression of SOX4 was observed in prostate cancer tissues and cells. RESULTS: Overexpression of miRNA-214-5p to prostate cancer cells significantly inhibited the proliferation of cancer cells, and the expression of SOX4 was inhibited in the transfected cell line. After transfection of miRNA-214-5p inhibitor into prostate cancer cells, the cell proliferation rate further increased. Meanwhile, overexpression of miRNA-214-5p effectively inhibited the expression of SOX4 downstream factors, including c-Myc, eIF4E, and CDK4. However, the specific knockdown of SOX4 through SOX4 shRNA significantly reduced the proliferation of prostate cancer cell lines. CONCLUSIONS: miRNA-214-5 can inhibit the proliferation of prostate cancer cells by specifically targeting S0X4 and inhibiting the expression of growth factors downstream of this pathway.


Assuntos
MicroRNAs , Neoplasias da Próstata , Fatores de Transcrição SOXC , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Prognóstico , Neoplasias da Próstata/genética , Reprodutibilidade dos Testes , Fatores de Transcrição SOXC/genética
5.
Soft Matter ; 16(7): 1908-1921, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995090

RESUMO

A simple Pickering emulsion route has been developed for the assembly of temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles into colloidal molecules comprising a small number of discrete microgel interaction sites on a central oil emulsion droplet. Here, the surface activity of the microgels serves to drive their assembly through adsorption to growing polydimethylsiloxane (PDMS) emulsion oil droplets of high monodispersity, prepared in situ via ammonia-catalysed hydrolysis and condensation of dimethyldiethoxysilane (DMDES). A dialysis step is employed in order to limit further growth once the target assembly size has been reached, thus yielding narrowly size-distributed, colloidal molecule-like microgel-Pickering emulsion oil droplets with well-defined microgel interaction sites. The temperature-responsiveness of the PNIPAM interaction sites will allow for the directional interactions to be tuned in a facile manner with temperature, all the way from soft repulsive to short-range attractive as the their volume phase transition temperature (VPTT) is crossed. Finally, the microgel-Pickering emulsion approach is extended to a mixture of PNIPAM and poly(N-isopropylmethacrylamide) (PNIPMAM) microgels that differ with respect to their VPTT, this in order to prepare patchy colloidal molecules where the directional interactions will be more readily resolved.

6.
Soft Matter ; 15(42): 8512-8524, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31633148

RESUMO

The self-assembly of small colloidal clusters, so-called colloidal molecules, into crystalline materials has proven extremely challenging, the outcome often being glassy, amorphous states where positions and orientations are locked. In this paper, a new type of colloidal molecule is therefore prepared, assembled from poly(N-isopropylacrylamide) (PNIPAM)-based microgels that due to their well documented softness and temperature-response allow for greater defect tolerance compared to hard spheres and for convenient in situ tuning of size, volume fraction and inter-particle interactions with temperature. The microgels (B) are assembled by electrostatic adsorption onto oppositely charged, smaller-sized microgels (A), where the relative size of the two determines the valency (n) of the resulting core-satellite ABn-type colloidal molecules. Following assembly, a microfluidic deterministic lateral displacement (DLD) device is used to effectively isolate AB4-type colloidal molecules of tetrahedral geometry that possess a repulsive-to-attractive transition on crossing the microgels' volume phase transition temperature (VPTT). These soft, temperature-responsive colloidal molecules constitute highly promising building blocks for the preparation of new materials with emergent properties, and their optical wavelength-size makes them especially interesting for optical applications.

7.
Angew Chem Int Ed Engl ; 58(39): 13969-13975, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31361387

RESUMO

A BN membrane with a distinct nanoconfinement effect toward efficient ethylene/ethane separation is presented. The horizontal and inclined self-assembly of 2D BN nanosheets endow the BN membrane with abundant percolating nanochannels, and these nanochannels are further decorated by reactive ionic liquids (RILs) to tailor their sizes as well as to achieve nanoconfinement effect. The noncovalent interactions between RIL and BN nanosheets favor the ordered alignment of the cations and anions of RIL within BN nanochannels, which contributes to a fast and selective ethylene transport. The resultant membranes exhibit an unprecedented separation performance with superhigh C2 H4 permeance of 138 GPU and C2 H4 /C2 H6 selectivity of 128 as well as remarkably improved long-term stability for 180 h, outperforming reported state-of-the-art membranes.

8.
Materials (Basel) ; 17(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38399086

RESUMO

The production of autoclaved aerated concrete via the autoclaving process incurs substantial energy consumption, posing a challenge to sustainable economic development. Herein, a novel nonautoclaved aerated concrete (NAAC) was prepared using sulfoaluminate cement as the primary raw material and aluminum powder as the aerating agent. The physicomechanical characteristics and pore structures of the sulfoaluminate-cement-based (SAC) NAAC (SAC-NAAC) were examined through X-ray diffraction, thermogravimetry, and scanning electron microscopy. The findings revealed that the optimal mechanical attributes of the SAC-NAAC were achieved at a water-cement ratio of 0.55, with a specific content ratio of polycarboxylate superplasticizer-borax-calcium stearate-sodium hydroxide at 0.24%:0.32%:0.36%:2.90%, along with 0.40% aluminum powder. The SAC-NAAC samples, with a bulk density range of 600-750 g/m3, exhibited a compressive strength of 3.55-4.16 MPa, porosity of 45.9-63.5%, and water absorption rate of 60.2-74.4%. The weight loss in the SAC-NAAC with different aluminum powder contents ranged between 15.23% and 16.83%. The prismatic ettringite (AFt) crystals served as the main source of strength for the SAC-NAAC, and AH3 was attached to the AFt surfaces in a microcrystalline gel phase, thereby further enhancing the strength of the SAC-NAAC. Thus, the lightweight, high-strength SAC-NAAC has great potential as a nonautoclaved aerated concrete.

9.
Iran J Public Health ; 53(5): 1087-1095, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38912154

RESUMO

Background: We aimed to investigate the clinical application effect of people-oriented nursing model on the negative emotions and psychological conditions of patients with bladder cancer. Methods: Eighty patients with bladder cancer were enrolled from January 2020 to January 2022 in the Second Affiliated Hospital of Qiqihar Medical University Heilongjiang, Province, China. The patients were randomly divided into the control group, each group consisted of 40 patients (conventional nursing mode) and the experimental group (people-oriented nursing mode) according to the admission time. The differences of the anxiety, depression and quality of life scores at the time of admission and discharge were compared between the two groups. Results: There was statistically significant differences in the Self-Rating Anxiety Scale (SAS) and Self-rating depression scale (SDS) score within each group of patients and between the two groups at the time of admission and discharge, respectively (P=0.001). In addition, there was a statistically significant difference in the scores at discharge, and the scores of the patients in the experimental group were better than those in the control group. There was a statistically significant difference in the scores at discharge, and the scores of the experimental group were lower than those of the control group P<0.001). After comparing the overall scores of admission and discharge of the two groups of patients, the differences were statistically significant, and the scores at discharge were better improved than those at admission were. Conclusion: The people-oriented nursing model could relieve the negative emotions, relieve pain and improve the life quality of patients with bladder cancer.

10.
Appl Opt ; 52(23): 5600-5, 2013 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23938407

RESUMO

Orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy was first used to determine the laser-ablation threshold of samples. In this technique, the first laser pulse was used to ablate samples and the second time-delayed laser pulse was used to break down the ablated samples. Orthogonal geometric arrangement was adopted in this technique to ensure both high spatial resolution and high detection sensitivity. By monitoring the intensities of the atomic emission of the plasma under different pulse energies of the ablation laser and using an extrapolation method, the minimum pulse energy needed for the ablation of copper alloy under the tightly focused condition with a nanosecond 532 nm ablation laser was determined to be 1.9±0.1 µJ. After experimentally determining the beam spot size on the focal plan, the fluence threshold of the studied sample was determined to be 0.64±0.06 J/cm². This technique is able to realize direct and sensitive determination of a laser-ablation threshold of solid samples, and it is possible to find some important applications in different fields.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(9): 2558-61, 2013 Sep.
Artigo em Zh | MEDLINE | ID: mdl-24369671

RESUMO

The analytical performance of laser ignition assisted spark-induced breakdown spectroscopy (LI-SIBS) for the analysis of trace metal in aluminum alloy was reported in the present article. In order to improve the analytical performance of spark-induced breakdown spectroscopy, a low energy laser pulse was focused on the surface of the sample to produce plasma between discharge electrodes to trigger high voltage spark discharge. Under current geometrical arrangement, optimized discharge voltage and capacitance were determined, and copper in aluminum alloy was analyzed under optimized experimental condition. The limit of detection of copper in aluminum alloy was determined to be 0.7 ppm. Both signal stability and measurement accuracy for spark-induced breakdown spectroscopy were improved with the assistance of laser ignition. The discharge voltage could be reduced and the spatial resolution could be improved with the assistance of laser ignition at the same time. It was demonstrated that LI-SIBS has the characteristics of high sensitivity, good stability and better spatial resolution and is suitable for trace elements analysis in different alloys.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(12): 3392-5, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24611409

RESUMO

To resolve the contradiction between spatial resolution and analysis sensitivity in single pulse laser-induced breakdown spectroscopy (LIBS), a study on dual-wavelength laser-ablation laser-induced breakdown spectroscopy (LA-LIBS) was carried out by using one Nd : YAG laser which was capable of two laser beam outputs with different wavelengths, where, the second harmonic output, 532 nm laser beam, was used as laser-ablation source, and the fundamental output, 1064 nm laser beam, was delivered with a large core diameter silica fiber to realize nanoseconds time-delay and then used to breakdown the ablated samples. Two laser beams were orthogonally arranged to realize element analysis with high spatial resolution and high sensitivity. Some key techniques on the coupling of 1064 nm laser beam into fiber, the collimation of laser at the fiber end and re-focusing of the laser beam were studied. The energy delivery capabilities of four fibers of different types were studied and the maximum values were determined experimentally. A Q-switched laser pulse with 15 mJ pulse energy was successfully delivered by selecting a 50 meter long silica fiber with 800 microm core diameter and 0. 39 numerical aperture. And 250 ns time-delay was realized. A copper alloy was analyzed by spectra with current established LA-LIBS system and the possibility of realizing dual-wavelength LA-LIBS analysis based on one Nd : YAG laser was demonstrated experimentally. In this technique, only one Nd: YAG laser was required to carry out spectral analysis. It has a few advantages, such as simple equipment structure, and being convenient to miniaturize the whole system etc. This dual-wavelength LA-LIBS technique was suitable for in-situ elements microanalysis for different samples with both high spatial resolution and high sensitivity.

13.
Ther Innov Regul Sci ; 57(6): 1314-1321, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651044

RESUMO

BACKGROUND: In order to meet the unmet needs of rare disease patients in China, importing orphan drugs is an important way. The objectives of this study were to investigate the marketing trend of orphan drugs approved by the US Food and Drug Administration (FDA) and imported by China, to examine the orphan drug lag between China and the United States. METHODS: This study analyzes the orphan drugs approved by FDA and imported by China from January 2010 to December 2021. The approval lag for orphan drugs between China and the US was calculated and analyzed by approval time. Factors potentially affecting the approval lag, such as target disease, ATC classification, formulation, corporation name, drug type, and whether the indications belong to the first batch of rare diseases catalogue were investigated. RESULTS: The number of FDA-approved orphan drugs imported by China is increasing year by year, and the approval lag of these drugs is gradually decreasing, especially in the classification of Non-L, Injections, Non-United States, and biological product. Compared with 2010-2015, the approval lag of total drugs in the study was significantly improved in 2016-2021 (1977 days) compared with 2010-2015 (3928 days). CONCLUSION: China's groundbreaking regulatory reforms of drugs since 2015 had made significant progress in reducing orphan drug lags, but there is still considerable room for progress. We should more actively promote the approval of rare disease drugs in China, establish a better approval mechanism, and enable Chinese patients with rare diseases to receive drug treatment in a timely manner.

14.
Front Neurol ; 14: 1281412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164201

RESUMO

Background: Cerebral cavernous malformation (CCM) is a rare disease associated with a latent risk of intracranial hemorrhage. However, due to limited evidence, the safety of recommending intravenous tissue plasminogen activators for patients with acute stroke and CCM remains uncertain. Methods: Our study identified five patients with acute stroke and CCM treated between 2017 and 2023 across two hospitals. A comprehensive literature review was conducted, incorporating three similar case reports and two retrospective studies. Results: Among 30 patients reviewed, three exhibited symptomatic intracranial hemorrhage, two of whom were women. Additionally, three patients presented with calcification in their CCM, with two experiencing symptomatic intracranial hemorrhage. Conclusion: The observed incidence of symptomatic intracranial hemorrhage following intravenous tissue plasminogen activator administration appears to be elevated in patients with CCM. Therefore, before thrombolysis, a thorough evaluation of personalized risk-benefit ratios is crucial. Furthermore, conducting further research involving multiple centers and larger sample sizes is imperative to advance our understanding in this area, especially in identifying hemorrhage risk factors.

15.
PLoS One ; 17(10): e0274503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36288380

RESUMO

We aimed to examine the association of CSF tumor necrosis factor-alpha (TNFα) with conversion from mild cognitive impairment (MCI) to dementia. At baseline, there were a total of 129 participants with MCI in this study. The association of CSF TNFα levels with the incidence of dementia were evaluated using Cox proportional hazards regression analysis adjusted for potential confounders. Individuals were categorized into groups based on the CSF TNFα tertiles. Compared to the low group (the reference group), the intermediate group progressed more rapidly to dementia [HR (95% CI) = 2.2 (1.15-4.1); p = 0.016] after adjusting for other covariates. However, the high group did not progress faster than the low group [HR (95% CI) = 1.5 (0.79-2.8); p = 0.214]. Our study suggested a potential non-relationship between CSF TNFα levels and the risk of development of dementia among MCI older people.


Assuntos
Disfunção Cognitiva , Demência , Humanos , Idoso , Fator de Necrose Tumoral alfa , Disfunção Cognitiva/epidemiologia , Incidência , Análise de Regressão , Progressão da Doença , Testes Neuropsicológicos
16.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088876

RESUMO

Dihydromyricetin (DMY) is a natural flavonoid that possesses a wide range of pharmacological properties. The aim of the present study was to determine whether DMY could protect against nerve cell injury following ischemic stroke through antioxidant and neuroprotective effects. The effects of DMY on the viability, oxidative stress and apoptosis of HT22 cells following oxygen­glucose deprivation and re­oxygenation (OGD/R) were examined using MTT, lactate dehydrogenase (LDH), superoxide (SOD), malondialdehyde (MDA), western blot and TUNEL assays. Furthermore, Wnt/ß­catenin signaling proteins in OGD/R­stimulated HT22 cells were detected in the presence or absence of DMY. In a separate experiment, the effect of DMY on OGD/R­induced HT22 cell injury was also observed in the presence of the Wnt/ß­catenin inhibitor, XAV939. The results demonstrated that DMY had no impact on the survival of untreated HT22 cells, although DMY treatment significantly increased cell viability and inhibited cytotoxicity, oxidative stress and apoptosis following OGD/R. In addition, DMY upregulated the expression of Wnt/ß­catenin in OGD/R­stimulated HT22 cells. In conclusion, DMY protected HT22 cells from OGD/R­induced oxidative stress and apoptosis, and its effects may be mediated by the activation of the Wnt/ß­catenin signaling pathway.


Assuntos
Glucose , Oxigênio , Apoptose , Sobrevivência Celular , Flavonóis/farmacologia , Glucose/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Via de Sinalização Wnt
17.
CNS Neurosci Ther ; 28(12): 2066-2075, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36000537

RESUMO

OBJECTIVE: Diffusion-weighted imaging lesions (DWILs) are associated with unfavorable outcome in intracerebral hemorrhage (ICH). We proposed a novel predictive nomogram incorporating DWILs. METHODS: A total of 738 patients with primary ICH in a tertiary hospital were prospectively enrolled as a training cohort. DWILs were defined as remote focal hyperintensities on DWI corresponding to low intensities on apparent diffusion coefficient images and remote from the focal hematoma. The outcome of interest was modified Rankin Scale scores of 4-6 at 90 days after onset. Multivariate logistic regression was used to construct a nomogram. Model performance was tested in the training cohort and externally validated with respect to discrimination, calibration, and clinical usefulness in another institute. Additionally, the nomogram was compared with the ICH score in terms of predictive ability. RESULTS: Overall, 153 (20.73%) and 23 (15.54%) patients developed an unfavorable outcome in the training and validation cohorts, respectively. The multivariate analysis revealed that age, National Institutes of Health Stroke Scale (NIHSS) score, anemia, infratentorial location, presence of DWILs, and prior ICH were associated with unfavorable outcome. Our ANAID-ICH nomogram was constructed according to the aforementioned variables; the area under the receiver operating characteristic curve was 0.842 and 0.831 in the training and validation sets, respectively. With regard to the 90-day outcome, the nomogram showed a significantly higher predictive value than the ICH score in both cohorts. CONCLUSIONS: The ANAID-ICH nomogram comprising age, NIHSS score, anemia, infratentorial location, presence of DWILs, and prior ICH may facilitate the identification of patients at higher risk for an unfavorable outcome.


Assuntos
Hemorragia Cerebral , Nomogramas , Humanos , Prognóstico , Hemorragia Cerebral/patologia , Hematoma , Curva ROC , Estudos Retrospectivos
18.
Materials (Basel) ; 15(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36363095

RESUMO

This work analyzed changes in the corrosion morphology and mechanical performance of 7085 aluminum alloy after outdoor exposures for different times in a humid and hot marine atmospheric environment. After one month of exposure, a pronounced corrosion of the alloy was observed. The corrosion product was mainly Al(OH)3, and the corrosion features were mainly pitting corrosion and intergranular corrosion (IGC). With the exposure time extended from 6 months to 12 months, the IGC depth increased from 114 µm to 190 µm. After a 1-year outdoor exposure in a humid and hot marine environment, the alloy's ultimate strength and yield stress remained nearly unchanged, while its elongation and area reduction decreased from the original 6% and 9%, respectively, to 3% and 5%. Moreover, the reasons for IGC and its effect on the mechanical performance was analyzed.

19.
Colloids Surf B Biointerfaces ; 198: 111467, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33302151

RESUMO

As a new member of two-dimensional (2D) nanomaterials, black phosphorus (BP) has been considered as efficient photothermal therapy (PTT) agents owing to its excellent photothermal efficiency and biodegradability. Herein, a multifunctional nanoplatform based on black phosphorus nanosheets (BP NSs) was developed for chemo-photothermal synergistic cancer therapy. The BP NSs were successfully prepared by a liquid exfoliation technique. Doxorubicin (DOX), as a model drug, was loaded into the cavity of poly (amidoamine) (PAMAM) dendrimer using thin film hydration method. Then, PAMAM@DOX was coated on the surface of BP NSs using an electrostatic adsorption method that combined bath sonication with magnetic stirring. Hyaluronic acid (HA) was also modified onto the BP NS-PAMAM@DOX through electrostatic adsorption. PAMAM and HA layer could effectively isolate BP NSs from water and air to improve physiological stability. BP NSs and BP NS-PAMAM@DOX-HA were characterized by particle size, zeta potential, morphology, UV-vis-NIR absorption spectra, stability, photothermal performance and photothermal stability. This nanosystem exhibited a good pH and near infrared (NIR) dual-responsive drug release property. In addition, the obtained BP NS-PAMAM@D OX-HA nanocomposites possessed excellent PTT efficiency both in vitro and in vivo. The in vitro cell experiments suggested that the targeted BP NS-PAMAM@DOX-HA presented greater cytotoxicity and higher cellular uptake efficiency. Tumor xenograft model was established in BALB/C mice. The therapeutic effect of BP NS-PAMAM@DOX-HA was further augmented under 808 nm laser irradiation, displaying superior antitumor effect in comparison with chemotherapy or PTT alone. Such a biodegradable BP NS-based platform provide new insights for the rational design of PTT-based combinational cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Fósforo , Fototerapia
20.
Drug Deliv Transl Res ; 11(3): 1133-1143, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32776211

RESUMO

The platform of the combination chemo-photodynamic therapy has received widespread attention for enhancing anticancer efficacy and inhibiting tumor growth, which supports thermosensitive and controlled drug release. Here, an injectable thermoreversible hydrogel (BPNSs/DTX-M-hydrogel) co-encapsulating black phosphorus nanosheets (BPNSs) and docetaxel (DTX) micelles was prepared to increase drug accumulation in tumor tissue and improve anticancer efficacy. BPNSs were prepared by liquid exfoliation method with a simple and rapid preparation, and DTX micelles were prepared by the thin film dispersion method. Hydrogel was prepared with F127 as hydrogel matrix for intratumoral injection. BPNSs, DTX micelles, and BPNSs/DTX-M-hydrogel were characterized by particle size, morphology, stability and degradation, phase transition feature, and photodynamic performance. And the in vivo anticancer efficacy was evaluated in 4T1 tumor-bearing Balb/c mice. The results showed that the particle size of DTX micelles and BPNSs were about 16 and 180 nm, respectively. The hydrogel with the transformation temperature at near body exhibited great photodynamic efficacy and good biodegradability. Moreover, BPNSs/DTX-M-hydrogel with the combination of chemotherapy and photodynamic therapy exhibited unique anticancer efficacy with low toxicity. In conclusion, the combination platform of chemo-photodynamic therapy based on BPNSs could be a prospective strategy in antitumor research. Graphical abstract.


Assuntos
Antineoplásicos , Fotoquimioterapia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos , Hidrogéis , Camundongos , Micelas , Fósforo/farmacologia , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA