RESUMO
Conjugated polymers are promising candidates for molecular wires in nanoelectronics, with flexibility in mechanics, stability in chemistry and variety in electrical conductivity. Polyene, as a segment of polyacetylene, is a typical conjugated polymer with straightforward structure and wide-range adjustable conductance. To obtain atomic scale understanding of charge transfer in polyene, we have measured the conductance of a single polyene-based molecular chain via lifting it up with scanning tunneling microscopy tip. Different from semiconducting characters in pristine polyene (polyacetylene), high conductance and low decay constant are obtained, along with an electronic state around Fermi level and characteristic vibrational mode. These observed phenomena result from pinned molecular orbital owing to molecule-electrode coupling at the interface, and weakened bond length alternation due to electron-phonon coupling inside single molecular chain. Our findings emphasize the interfacial characteristics in molecular junctions and promising properties of polyene, with single molecular conductance as a vital tool for bringing insights into the design and construction of nanodevices.
RESUMO
On-surface synthesis of phenylenes is a promising strategy to form extended π-conjugated frameworks but normally lacks selectivity in achieving uniform products. Herein we demonstrate that the debromination reaction of 2,3-dibromophenazine (DBPZ) on Au(111) and Ag(111) surfaces can vary significantly considering the involvement of metal-organic hybrids (MOHs). On Au(111), [2 + 2] and [2 + 2 + 2] cycloadditions facilitate instantaneously upon the debromination occurring, while on Ag(111), several MOHs have been observed under sequential thermal annealing, leading to finally the uniform [2 + 2] cycloaddition product exclusively. By means of scanning tunneling microscopy (STM) and bond-resolved atomic force microscopy (BR-AFM), we have unambiguously depicted the chemical structure of related reaction intermediates and unraveled the undocumented role of hierarchical evolution of MOHs in steering the chemical selectivity.
RESUMO
Achieving C(sp3)-H activation at a mild temperature is of great importance from both scientific and technologic points of view. Herein, on the basis of the on-surface synthesis strategy, we report the significant reduction of the C(sp3)-H activation barrier, which results in the full C(sp3)-H to C(sp2)-H transformation of n-alkanol (octacosan-1-ol) at a mild temperature as low as 350 K on the Cu(110) surface, yielding the conjugated polyenal (octacosa-tridecaenal) as the final product. The reaction mechanism is revealed by the combined scanning tunneling microscope, density functional theory, and synchrotron radiation photoemission spectroscopy.