Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(2): E107-E123, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170164

RESUMO

Neural regulation of hepatic metabolism has long been recognized. However, the detailed afferent and efferent innervation of the human liver has not been systematically characterized. This is largely due to the liver's high lipid and pigment contents, causing false-negative (light scattering and absorption) and false-positive (autofluorescence) results in in-depth fluorescence imaging. Here, to avoid the artifacts in three-dimensional (3-D) liver neurohistology, we embed the bleached human liver in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution imaging. Importantly, using the paired substance P (SP, sensory marker) and PGP9.5 (pan-neuronal marker) labeling, we detect the sensory nerves in the portal space, featuring the SP+ varicosities in the PGP9.5+ nerve bundles/fibers, confirming the afferent liver innervation. Also, using the tyrosine hydroxylase (TH, sympathetic marker) labeling, we identify 1) condensed TH+ sympathetic nerves in the portal space, 2) extension of sympathetic nerves from the portal to the intralobular space, in which the TH+ nerve density is 2.6 ± 0.7-fold higher than that of the intralobular space in the human pancreas, and 3) the TH+ nerve fibers and varicosities contacting the ballooning cells, implicating potential sympathetic influence on hepatocytes with macrovesicular fatty change. Finally, using the vesicular acetylcholine transporter (VAChT, parasympathetic marker), PGP9.5, and CK19 (epithelial marker) labeling with panoramic-to-Airyscan super-resolution imaging, we detect and confirm the parasympathetic innervation of the septal bile duct. Overall, our labeling and 3-D/Airyscan imaging approach reveal the hepatic sensory (afferent) and sympathetic and parasympathetic (efferent) innervation, establishing a clinically related setting for high-resolution 3-D liver neurohistology.NEW & NOTEWORTHY We embed the human liver (vs. pancreas, positive control) in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution neurohistology. The pancreas-liver comparison reveals: 1) sensory nerves in the hepatoportal space; 2) intralobular sympathetic innervation, including the nerve fibers and varicosities contacting the ballooning hepatocytes; and 3) parasympathetic innervation of the septal bile duct. Our results highlight the sensitivity and resolving power of 3-D/Airyscan super-resolution imaging in human liver neurohistology.


Assuntos
Fígado , Neurônios , Humanos , Fígado/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/metabolismo , Polímeros , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Am J Physiol Endocrinol Metab ; 323(4): E354-E365, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35947703

RESUMO

Pancreatic intraepithelial neoplasia (PanIN) and islet cell microadenoma are exocrine and endocrine neoplasms of human pancreas that have been linked to pancreatic ductal adenocarcinoma (PDAC) and neuroendocrine tumor, respectively. However, in health and at the surgical margin of pancreatic cancer, it remains unresolved how to simultaneously characterize duct and islet remodeling to investigate the exocrine-endocrine association in the lesion microenvironment. Here, we develop a new vibratome-based approach to detect, confirm, and analyze the two types of pancreas remodeling via stereo/three-dimensional (3-D) and classic/two-dimensional (2-D) histology. Surgical margins of PDAC (n = 10, distal) and cadaveric donor pancreases (n = 10, consecutive cases) were fixed, sectioned by vibratome (350 µm), and surveyed for PanIN and microadenoma via stereomicroscopy. After lesion detection, PanIN and microadenoma were analyzed with 3-D fluorescence imaging and clinical microtome-based histology for confirmation and assessment of microenvironment. Multimodal imaging of PDAC surgical margins and cadaveric donor pancreases detected the peri-PanIN islet aggregation with duct-islet cell clusters. Organ-wide survey of cadaveric donor pancreases shows a marked 2.3-fold increase in the lesion size with the PanIN-islet association vs. without the association. In the survey, we unexpectedly detected the islet cell microadenoma adjacent to (<2 mm) PanIN. Overall, among the 53 early lesions in the cadaveric donor pancreases (PanINs and microadenomas), 81% are featured with the associated exocrine-endocrine tissue remodeling. Multimodal 3-D/2-D tissue imaging reveals local and simultaneous duct and islet remodeling in the cancer surgical margin and cadaveric donor pancreas. In the cadaveric donor pancreas, the peri-PanIN islet aggregation and PanIN-microadenoma association are two major features of pancreas remodeling in the early lesion microenvironment.NEW & NOTEWORTHY We develop a new multimodal 3-D/2-D imaging approach (matched stereomicroscopic, fluorescence, and H&E signals) to examine human duct-islet association in the PDAC surgical margin and cadaveric donor pancreas. In both conditions, peri-PanIN islet aggregation with duct-islet cell clusters was identified. The PanIN-islet cell microadenoma association was unexpectedly detected in the donor pancreas. Our work provides the technical and morphological foundations to simultaneously characterize human islets and ducts to study their association in health and disease.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Cadáver , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Humanos , Margens de Excisão , Pâncreas/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Diabetologia ; 64(10): 2266-2278, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272581

RESUMO

AIMS/HYPOTHESIS: Islets are thought to be stably present in the adult human pancreas to maintain glucose homeostasis. However, identification of the pancreatic intraepithelial neoplasia (PanIN)-islet complex in mice and the presence of PanIN lesions in adult humans suggest that similar remodelling of islet structure and environment may occur in the human pancreas. To identify islet remodelling in a clinically related setting, we examine human donor pancreases with 3D histology to detect and characterise the human PanIN-islet complex. METHODS: Cadaveric donor pancreases (26-65 years old, n = 10) were fixed and sectioned (350 µm) for tissue labelling, clearing and microscopy to detect local islet remodelling for 3D analysis of the microenvironment. The remodelled microenvironment was subsequently examined via microtome-based histology for clinical assessment. RESULTS: In nine pancreases, we identified the unique peri-lobular islet aggregation associated with the PanIN lesion (16 lesion-islet complexes detected; size: 3.18 ± 1.34 mm). Important features of the lesion-islet microenvironment include: (1) formation of intra-islet ducts, (2) acinar atrophy, (3) adipocyte association, (4) inflammation (CD45+), (5) stromal accumulation (α-SMA+), (6) increase in Ki-67 proliferation index but absence of Ki-67+ alpha/beta cells and (7) in-depth and continuous duct-islet cell contacts, forming a cluster. The duct-islet cell cluster and intra-islet ducts suggest likely islet cell neogenesis but not replication. CONCLUSIONS/INTERPRETATION: We identify local islet remodelling associated with PanIN-islet complex in the adult human pancreas. The tissue remodelling and the evidence of inflammation and stromal accumulation suggest that the PanIN-islet complex is derived from tissue repair after a local injury.


Assuntos
Ilhotas Pancreáticas/citologia , Ductos Pancreáticos/citologia , Actinas/metabolismo , Adipócitos/metabolismo , Adulto , Idoso , Proliferação de Células , Microambiente Celular , Feminino , Humanos , Imageamento Tridimensional , Ilhotas Pancreáticas/fisiologia , Antígeno Ki-67/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Ductos Pancreáticos/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Doadores de Tecidos
4.
Am J Physiol Endocrinol Metab ; 320(6): E1007-E1019, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900850

RESUMO

Intraportal islet transplantation has been clinically applied for treatment of unstable type 1 diabetes. However, in the liver, systematic assessment of the dispersed islet grafts and the graft-hepatic integration remains difficult, even in animal models. This is due to the lack of global and in-depth analyses of the transplanted islets and their microenvironment. Here, we apply three-dimensional (3-D) mouse liver histology to investigate the islet graft microstructure, vasculature, and innervation. Streptozotocin-induced diabetic mice were used in syngeneic intraportal islet transplantation to achieve euglycemia. Optically cleared livers were prepared to enable 3-D morphological and quantitative analyses of the engrafted islets. 3-D image data reveal the clot- and plaque-like islet grafts in the liver: the former are derived from islet emboli and associated with ischemia, whereas the latter (minority) resemble the plaques on the walls of portal vessels (e.g., at the bifurcation) with mild, if any, perigraft tissue damage. Three weeks after transplantation, both types of grafts are revascularized, yet significantly more lymphatics are associated with the plaque- than clot-like grafts. Regarding the islet reinnervation, both types of grafts connect to the periportal nerve plexus and develop peri- and intragraft innervation. Specifically, the sympathetic axons and varicosities contact the α-cells, highlighting the graft-host neural integration. We present the heterogeneity of the intraportally transplanted islets and the graft-host neurovascular integration in mice. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue and cellular analyses of human islet grafts in the liver.NEW & NOTEWORTHY Modern 3-D histology identifies the clot- and plaque-like islet grafts in the mouse liver, which otherwise cannot be distinguished with the standard microtome-based histology. The two types of grafts are similar in blood microvessel density and sympathetic reinnervation. Their differences, however, are their locations, severity of associated liver injury, and access to lymphatic vessels. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue/cellular analyses of human islet grafts in the liver.


Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Fígado/patologia , Animais , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/patologia , Sobrevivência de Enxerto/fisiologia , Técnicas Histológicas , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/inervação , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas/métodos , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Fígado/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Veia Porta , Regeneração/fisiologia
5.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G694-G706, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509431

RESUMO

The pancreas consists of both the exocrine (acini and ducts) and endocrine (islets) compartments to participate in and regulate the body's digestive and metabolic activities. These activities are subjected to neural modulation, but characterization of the human pancreatic afferent and efferent nerves remains difficult because of the lack of three-dimensional (3-D) image data. Here we prepare transparent human donor pancreases for 3-D histology to reveal the pancreatic microstructure, vasculature, and innervation in a global and integrated fashion. The pancreatic neural network consists of the substance P (SP)-positive sensory (afferent) nerves, the vesicular acetylcholine transporter (VAChT)-positive parasympathetic (efferent) nerves, and the tyrosine hydroxylase (TH)-positive sympathetic (efferent) nerves. The SP+ afferent nerves were found residing along the basal domain of the interlobular ducts. The VAChT+ and TH+ efferent nerves were identified at the peri-acinar and perivascular spaces, which follow the blood vessels to the islets. In the intrapancreatic ganglia, the SP+ (scattered minority, ~7%) and VAChT+ neurons co-localize, suggesting a local afferent-efferent interaction. Compared with the mouse pancreas, the human pancreas differs in 1) the lack of SP+ afferent nerves in the islet, 2) the lower ganglionic density, and 3) the obvious presence of VAChT+ and TH+ nerves around the intralobular adipocytes. The latter implicates the neural influence on the pancreatic steatosis. Overall, our 3-D image data reveal the human pancreatic afferent and efferent innervation patterns and provide the anatomical foundation for future high-definition analyses of neural remodeling in human pancreatic diseases.NEW & NOTEWORTHY Modern three-dimensional (3-D) histology with multiplex optical signals identifies the afferent and efferent innervation patterns of human pancreas, which otherwise cannot be defined with standard histology. Our 3-D image data reveal the unexpected association of sensory and parasympathetic nerves/neurons in the intrapancreatic ganglia and identify the sympathetic and parasympathetic nerve contacts with the infiltrated adipocytes. The multiplex approach offers a new way to characterize the human pancreas in remodeling (e.g., fatty infiltration and duct lesion progression).


Assuntos
Ilhotas Pancreáticas/citologia , Neurônios Aferentes/citologia , Neurônios Eferentes/citologia , Pâncreas Exócrino/citologia , Células Acinares/citologia , Tecido Adiposo/citologia , Tecido Adiposo/inervação , Adulto , Animais , Feminino , Humanos , Imageamento Tridimensional , Ilhotas Pancreáticas/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Técnicas de Rastreamento Neuroanatômico , Neurônios Aferentes/metabolismo , Neurônios Eferentes/metabolismo , Pâncreas Exócrino/inervação , Substância P/genética , Substância P/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
6.
Diabetologia ; 61(1): 158-167, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28864913

RESUMO

AIMS/HYPOTHESIS: It has been proposed that the neuro-insular network enables rapid, synchronised insulin secretion. However, to date, acquiring the pancreatic tissue map to study the neural network remains a challenging task as there is a lack of feasible approaches for large-scale tissue analysis at the organ level. Here, we have developed 3-dimensional (3D) panoramic histology to characterise the pancreatic neuro-insular network in young mice. METHODS: Pancreases harvested from young wild-type B6 mice (3 and 8 weeks old) and db/db mice (3 weeks old; db/db vs db/+) were used to develop 3D panoramic histology. Transparent pancreases were prepared by optical clearing to enable deep-tissue, tile-scanning microscopy for qualitative and quantitative analyses of islets and the pancreatic tissue network in space. RESULTS: 3D panoramic histology reveals the pancreatic neurovascular network and the coupling of ganglionic and islet populations via the network. This integration is identified in both 3- and 8-week-old mice, featuring the peri-arteriolar neuro-insular network and islet-ganglionic aggregation. In weaning hyperphagic db/db mice, the 3D image data identifies the associated increases in weight, adipose tissue attached to the pancreas, density of large islets (major axis > 150 µm) and pancreatic sympathetic innervation compared with db/+ mice. CONCLUSIONS/INTERPRETATION: Our work provides insight into the neuro-insular integration at the organ level and demonstrates a new approach for investigating previously unknown details of the pancreatic tissue network in health and disease.


Assuntos
Insulina/metabolismo , Pâncreas/metabolismo , Animais , Peso Corporal/fisiologia , Cistos Glanglionares/metabolismo , Camundongos , Rede Nervosa/metabolismo , Obesidade/metabolismo
7.
Diabetologia ; 61(1): 168-181, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28852792

RESUMO

AIMS/HYPOTHESIS: Identification of a pancreatic neuro-insular network in mice suggests that a similar integration of islets and nerves may be present in the human pancreas. To characterise the neuro-insular network and the intra-pancreatic ganglia in a clinically related setting, we examined human pancreases in health and with fatty infiltration via 3-dimensional (3D) histology and compared the human pancreatic microenvironment with its counterpart in mice. METHODS: Human pancreatic specimens from individuals with normal BMI, high BMI (≥ 25) and type 2 diabetes were used to investigate the neuro-insular network. Transparent specimens were prepared by tissue clearing for transmitted light and deep-tissue fluorescence imaging to simultaneously visualise infiltrated adipocytes, islets and neurovascular networks. RESULTS: High-definition images of human islets reveal that both the sympathetic and parasympathetic nerves enter the islet core and reside in the immediate microenvironment of islet cells. Around the islets, the neuro-insular network is visualised with 3D histology to identify the intra-pancreatic ganglia (peri-lobular and intra-parenchymal ganglia) and the islet-ganglionic association. In humans, but not in mice, pancreatic fatty infiltration (BMI dependent) features adipocytes infiltrating into the parenchyma and accumulating in the peri-lobular space, in which the peri-lobular ganglia also reside. We identified the formation of adipose-ganglionic complexes in the peri-lobular space and enlargement of ganglia around adipocytes. In the specimen from the individual with type 2 diabetes, an increase in the number of nerve projections from the intra-parenchymal ganglia is associated with severe fatty infiltration. CONCLUSIONS/INTERPRETATION: We present new perspectives of human pancreas and islet innervation via 3D histology. Our results strongly suggest that fatty infiltration in the human pancreas creates a neurotrophic microenvironment and promotes remodelling of pancreatic innervation.


Assuntos
Pâncreas/metabolismo , Adipócitos/metabolismo , Animais , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Obesidade/metabolismo , Sistema Nervoso Simpático/metabolismo
8.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G412-22, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27340125

RESUMO

Pericytes and glial cells are accessory cells of neurovascular networks, which have been reported to participate in scar formation after tissue injury. However, it remains unclear whether similar reactive cellular responses occur in pancreatic intraepithelial neoplasia (PanIN). In this study we developed three-dimensional (3D) duct lesion histology to investigate PanIN and the associated pericyte, glial, and islet remodeling. Transparent mouse pancreata with a Kras(G12D) mutation were used to develop 3D duct lesion histology. Deep-tissue, tile-scanning microscopy was performed to generate panoramic views of the diseased pancreas for global examination of early stage and advanced duct lesion formation. Fluorescence signals of ductal and neurovascular networks were simultaneously detected to reveal associated remodeling. Significantly, in Kras(G12D)-mutant mice, when the low-grade PanINs emerge, duct lesions appear as epithelial buds with perilesional pericyte and glial activation. When PanINs occur in large scale (induced by cerulein injections to the mutant mice), the 3D image data identifies 1) aggregation of PanINs in clusters in space; 2) overexpression of the pericyte marker NG2 in the PanIN microenvironment; and 3) epithelial in-growth to islets, forming the PanIN-islet complexes. Particularly, the PanIN-islet complexes associate with proliferating epithelial and stromal cells and receive substantial neurovascular supplies, making them landmarks in the atrophic lobe. Overall, perilesional pericyte and glial activation and formation of the PanIN-islet complex underline cellular heterogeneity in the duct lesion microenvironment. The results also illustrate the advantage of using 3D histology to reveal previously unknown details of neurovascular and endocrine links to the disease.


Assuntos
Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Ilhotas Pancreáticas/fisiologia , Neuroglia/fisiologia , Pâncreas/patologia , Pericitos/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Transgênicos
9.
Am J Physiol Endocrinol Metab ; 306(5): E559-70, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24425762

RESUMO

Microscopic examination of transplanted islets in an ectopic environment provides information to evaluate islet engraftment, including revascularization and reinnervation. However, because of the dispersed nature of blood vessels and nerves, global visualization of the graft neurovascular network has been difficult. In this research we revealed the neurovascular network by preparing transparent mouse islet grafts under the kidney capsule with optical clearing to investigate the sympathetic reinnervation via three-dimensional confocal microscopy. Normoglycemic and streptozotocin-induced diabetic mice were used in syngeneic islet transplantation, with both groups maintaining euglycemia after transplantation. Triple staining of insulin/glucagon, blood vessels, and tyrosine hydroxylase (sympathetic marker) was used to reveal the graft microstructure, vasculature, and sympathetic innervation. Three weeks after transplantation, we observed perigraft sympathetic innervation similar to the peri-islet sympathetic innervation in the pancreas. Six weeks after transplantation, prominent intragraft, perivascular sympathetic innervation was achieved, resembling the pancreatic intraislet, perivascular sympathetic innervation in situ. Meanwhile, in diabetic recipients, a higher graft sympathetic nerve density was found compared with grafts in normoglycemic recipients, indicating the graft neural plasticity in response to the physiological difference of the recipients and the resolving power of this imaging approach. Overall, this new graft imaging method provides a useful tool to identify the islet neurovascular complex in an ectopic environment to study islet engraftment.


Assuntos
Transplante das Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/inervação , Rim/inervação , Plasticidade Neuronal/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Glucagon/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Rim/metabolismo , Camundongos
10.
Diabetologia ; 56(11): 2424-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23801221

RESUMO

AIMS/HYPOTHESIS: Islet Schwann (glial) cells and pericytes are the microorgan's accessory cells positioned at the external and internal boundaries facing the exocrine pancreas and endothelium, respectively, adjacent to the endocrine cells. Plasticity of glial cells and pericytes is shown in the glial scar formation after injury to the central nervous system. It remains unclear whether similar reactive cellular responses occur in insulitis. We applied three-dimensional (3D) histology to perform qualitative and quantitative analyses of the islet Schwann cell network and pericytes in normal, streptozotocin-injected (positive control of gliosis) and NOD mouse models. METHODS: Vessel painting paired with immunostaining of mouse pancreatic tissue was used to reveal the islet Schwann cells and pericytes and their association with vasculature. Transparent islet specimens were prepared by optical clearing to facilitate 3D confocal microscopy for panoramic visualisation of the tissue networks. RESULTS: In-depth microscopy showed that the islet Schwann cell network extends from the peri-islet domain into the core. One week after streptozotocin injection, we observed intra-islet perivascular gliosis and an increase in pericyte density. In early/moderate insulitis in the NOD mice, perilesional gliosis occurred at the front of the lymphocytic infiltration with atypical islet Schwann cell morphologies, including excessive branching and perivascular gliosis. Meanwhile, pericytes aggregated on the walls of the feeding arteriole at the peri- and intralesional domains with a marked increase in surface marker density. CONCLUSIONS/INTERPRETATION: The reactive cellular responses demonstrate plasticity and suggest a stop-gap mechanism consisting of the Schwann cells and pericytes in association with the islet lesion and vasculature when injury occurs.


Assuntos
Ilhotas Pancreáticas/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pericitos/patologia , Células de Schwann/patologia , Estreptozocina/toxicidade
11.
Am J Physiol Gastrointest Liver Physiol ; 304(1): G1-11, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23086917

RESUMO

Because of the dispersed nature of nerves and blood vessels, standard histology cannot provide a global and associated observation of the enteric nervous system (ENS) and vascular network. We prepared transparent mouse intestine and combined vessel painting and three-dimensional (3-D) neurohistology for joint visualization of the ENS and vasculature. Cardiac perfusion of the fluorescent wheat germ agglutinin (vessel painting) was used to label the ileal blood vessels. The pan-neuronal marker PGP9.5, sympathetic neuronal marker tyrosine hydroxylase (TH), serotonin, and glial markers S100B and GFAP were used as the immunostaining targets of neural tissues. The fluorescently labeled specimens were immersed in the optical clearing solution to improve photon penetration for 3-D confocal microscopy. Notably, we simultaneously revealed the ileal microstructure, vasculature, and innervation with micrometer-level resolution. Four examples are given: 1) the morphology of the TH-labeled sympathetic nerves: sparse in epithelium, perivascular at the submucosa, and intraganglionic at myenteric plexus; 2) distinct patterns of the extrinsic perivascular and intrinsic pericryptic innervation at the submucosal-mucosal interface; 3) different associations of serotonin cells with the mucosal neurovascular elements in the villi and crypts; and 4) the periganglionic capillary network at the myenteric plexus and its contact with glial fibers. Our 3-D imaging approach provides a useful tool to simultaneously reveal the nerves and blood vessels in a space continuum for panoramic illustration and analysis of the neurovascular complex to better understand the intestinal physiology and diseases.


Assuntos
Sistema Nervoso Entérico/anatomia & histologia , Intestinos/irrigação sanguínea , Intestinos/inervação , Animais , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/inervação , Capilares/anatomia & histologia , Feminino , Corantes Fluorescentes , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Plexo Mientérico/anatomia & histologia , Fibras Nervosas/fisiologia , Fatores de Crescimento Neural/metabolismo , Rede Nervosa/anatomia & histologia , Neuroglia/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Serotonina/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina Tiolesterase/metabolismo
12.
Nat Commun ; 14(1): 3395, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296117

RESUMO

Optical clearing with high-refractive-index (high-n) reagents is essential for 3D tissue imaging. However, the current liquid-based clearing condition and dye environment suffer from solvent evaporation and photobleaching, causing difficulties in maintaining the tissue optical and fluorescent features. Here, using the Gladstone-Dale equation [(n-1)/density=constant] as a design concept, we develop a solid (solvent-free) high-n acrylamide-based copolymer to embed mouse and human tissues for clearing and imaging. In the solid state, the fluorescent dye-labeled tissue matrices are filled and packed with the high-n copolymer, minimizing scattering in in-depth imaging and dye fading. This transparent, liquid-free condition provides a friendly tissue and cellular environment to facilitate high/super-resolution 3D imaging, preservation, transfer, and sharing among laboratories to investigate the morphologies of interest in experimental and clinical conditions.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional , Camundongos , Humanos , Animais , Imageamento Tridimensional/métodos , Solventes , Acrilamida , Imagem Óptica
13.
Am J Physiol Gastrointest Liver Physiol ; 302(10): G1099-110, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22421617

RESUMO

Morphological changes of interstitial cells of Cajal (ICC) have been proposed to characterize motility disorders. However, a global view of the network orientations of ICC subgroups has not been established to illustrate their three-dimensional (3-D) architectures in the human colon. In this research, we integrate c-kit immunostaining, 3-D microscopy with optical clearing, and image rendering to present the location-dependent network orientations with high definition. Full-depth colonic tissues were obtained from colectomies performed for nonobstructing carcinoma. Specimens of colon wall were prepared away from the tumor site. C-kit and nuclear fluorescent staining were used to identify the ICC processes and cell body. Optical clearing was used to generate transparent colon specimens, which led to panoramic visualization of the fluorescence-labeled ICC networks at the myenteric plexus (ICC-MY), longitudinal (ICC-LM) and circular (ICC-CM) muscles, and submucosal boundary (ICC-SM) up to 300 µm in depth via confocal microscopy with subcellular level resolution. We observed four distinct network patterns: 1) periganglionic ICC-MY that connect with ICC-LM and ICC-CM, 2) plexuses of ICC-LM within the longitudinal muscle and extending toward the serosa, 3) repetitive and organized ICC-CM layers running parallel to the circular muscle axis and extending toward the submucosa, and 4) a condensed ICC-SM layer lining the submucosal border. Among the four patterns, the orderly aligned ICC-CM layers provide an appropriate target for quantitation. Our results demonstrate the location-dependent network orientations of ICC subgroups and suggest a practical approach for in-depth imaging and quantitative analysis of ICC in the human colon specimen.


Assuntos
Colo/citologia , Células Intersticiais de Cajal/citologia , Idoso de 80 Anos ou mais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Plexo Mientérico/anatomia & histologia
14.
EBioMedicine ; 47: 98-113, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31495721

RESUMO

BACKGROUND: The lymphatic system is involved in metastasis in pancreatic cancer progression. In cancer staging, lymphatic spread has been used to assess the invasiveness of tumor cells. However, from the endothelium's perspective, the analysis downplays the peri-lesional activities of lymphatic vessels. This unintended bias is largely due to the lack of 3-dimensional (3-D) tissue information to depict the lesion microstructure and vasculature in a global and integrated fashion. METHODS: We targeted the pancreas as the model organ to investigate lymphatic vessel remodeling in cancer lesion progression. Transparent pancreases were prepared by tissue clearing to facilitate deep-tissue, tile-scanning microscopy for 3-D lymphatic network imaging. FINDINGS: In human pancreatic ductal adenocarcinoma, we identify the close association between the pancreatic intraepithelial neoplasia (PanIN) lesions and the lymphatic network. In mouse models of PanIN (elastase-CreER;LSL-KrasG12D and elastase-CreER;LSL-KrasG12D;p53+/-), the 3-D image data reveal the peri-lesional lymphangiogenesis, endothelial invagination, formation of the bridge/valve-like luminal tubules, vasodilation, and luminal invasion. In the orthotopic mouse model of pancreatic cancer, we identify the localized, graft-induced lymphangiogenesis and the peri- and intra-tumoral lymphatic vessel invasion. INTERPRETATION: The integrated view of duct lesions and vascular remodeling suggests an active role, rather than a passive target, of lymphatic vessels in the metastasis of pancreatic cancer. Our 3-D image data provide insights into the pancreatic cancer microenvironment and establish the technical and morphological foundation for systematic detection and 3-D analysis of lymphatic vessel invasion. FUND: Taiwan Academia Sinica (AS-107-TP-L15 and AS-105-TP-B15), Ministry of Science and Technology (MOST 106-2321-B-001-048, 106-0210-01-15-02, 106-2321-B-002-034, and 106-2314-B-007-004-MY2), and Taiwan National Health Research Institutes (NHRI EX107-10524EI).


Assuntos
Vasos Linfáticos/patologia , Neovascularização Patológica , Neoplasias Pancreáticas/patologia , Remodelação Vascular , Animais , Biomarcadores , Modelos Animais de Doenças , Progressão da Doença , Imunofluorescência , Xenoenxertos , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Vasos Linfáticos/metabolismo , Camundongos , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral
15.
EBioMedicine ; 2(2): 109-19, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26137552

RESUMO

The primary cells that participate in islet transplantation are the endocrine cells. However, in the islet microenvironment, the endocrine cells are closely associated with the neurovascular tissues consisting of the Schwann cells and pericytes, which form sheaths/barriers at the islet exterior and interior borders. The two cell types have shown their plasticity in islet injury, but their roles in transplantation remain unclear. In this research, we applied 3-dimensional neurovascular histology with cell tracing to reveal the participation of Schwann cells and pericytes in mouse islet transplantation. Longitudinal studies of the grafts under the kidney capsule identify that the donor Schwann cells and pericytes re-associate with the engrafted islets at the peri-graft and perivascular domains, respectively, indicating their adaptability in transplantation. Based on the morphological proximity and cellular reactivity, we propose that the new islet microenvironment should include the peri-graft Schwann cell sheath and perivascular pericytes as an integral part of the new tissue.


Assuntos
Imageamento Tridimensional/métodos , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/fisiologia , Neovascularização Fisiológica/fisiologia , Neurogênese/fisiologia , Pericitos/citologia , Células de Schwann/citologia , Animais , Proliferação de Células/fisiologia , Microambiente Celular/fisiologia , Células Endoteliais , Sobrevivência de Enxerto/fisiologia , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/inervação , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurilema/fisiologia , Regeneração
16.
Cell Mol Gastroenterol Hepatol ; 1(1): 102-119, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28247865

RESUMO

BACKGROUND & AIMS: Interstitial cells of Cajal (ICC) closely associate with nerves and smooth muscles to modulate gut motility. In the ICC microenvironment, although the circulating hormones/factors have been shown to influence ICC activities, the association between ICC and microvessels in the gut wall has not been described. We applied three-dimensional (3D) vascular histology with c-kit staining to identify the perivascular ICC and characterize their morphologic and population features in the human colon wall. METHODS: Full-thickness colons were obtained from colectomies performed for colorectal cancer. We targeted the colon wall away from the tumor site. Confocal microscopy with optical clearing (use of immersion solution to reduce scattering in optical imaging) was performed to simultaneously reveal the ICC and vascular networks in space. 3D image rendering and projection were digitally conducted to illustrate the ICC-vessel contact patterns. RESULTS: Perivascular ICC were identified in the submucosal border, myenteric plexus, and circular and longitudinal muscles via high-definition 3D microscopy. Through in-depth image projection, we specified two contact patterns-the intimate cell body-to-vessel contact (type I, 18% of ICC in circular muscle) and the long-distance process-to-vessel contact (type II, 16%)-to classify perivascular ICC. Particularly, type I perivascular ICC were detected with elevated c-kit staining levels and were routinely found in clusters, making them readily distinguishable from other ICC in the network. CONCLUSIONS: We propose a new subclass of ICC that closely associates with microvessels in the human colon. Our finding suggests a functional relationship between these mural ICC and microvessels based on the morphologic proximity.

17.
PLoS One ; 8(11): e81857, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324559

RESUMO

Microscopic analysis of tumor vasculature plays an important role in understanding the progression and malignancy of colorectal carcinoma. However, due to the geometry of blood vessels and their connections, standard microtome-based histology is limited in providing the spatial information of the vascular network with a 3-dimensional (3-D) continuum. To facilitate 3-D tissue analysis, we prepared transparent human colorectal biopsies by optical clearing for in-depth confocal microscopy with CD34 immunohistochemistry. Full-depth colons were obtained from colectomies performed for colorectal carcinoma. Specimens were prepared away from (control) and at the tumor site. Taking advantage of the transparent specimens, we acquired anatomic information up to 200 µm in depth for qualitative and quantitative analyses of the vasculature. Examples are given to illustrate: (1) the association between the tumor microstructure and vasculature in space, including the perivascular cuffs of tumor outgrowth, and (2) the difference between the 2-D and 3-D quantitation of microvessels. We also demonstrate that the optically cleared mucosa can be retrieved after 3-D microscopy to perform the standard microtome-based histology (H&E staining and immunohistochemistry) for systematic integration of the two tissue imaging methods. Overall, we established a new tumor histological approach to integrate 3-D imaging, illustration, and quantitation of human colonic microvessels in normal and cancerous specimens. This approach has significant promise to work with the standard histology to better characterize the tumor microenvironment in colorectal carcinoma.


Assuntos
Neoplasias Colorretais/patologia , Imageamento Tridimensional/métodos , Microvasos/patologia , Antígenos CD34/metabolismo , Neoplasias Colorretais/metabolismo , Humanos , Microvasos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA