Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(6): 107390, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777146

RESUMO

SARS-CoV-2 entry into host cells is facilitated by the interaction between the receptor-binding domain of its spike protein (CoV2-RBD) and host cell receptor, ACE2, promoting viral membrane fusion. The virus also uses endocytic pathways for entry, but the mediating host factors remain largely unknown. It is also unknown whether mutations in the RBD of SARS-CoV-2 variants promote interactions with additional host factors to promote viral entry. Here, we used the GST pull-down approach to identify novel surface-located host factors that bind to CoV2-RBD. One of these factors, SH3BP4, regulates internalization of CoV2-RBD in an ACE2-independent but integrin- and clathrin-dependent manner and mediates SARS-CoV-2 pseudovirus entry, suggesting that SH3BP4 promotes viral entry via the endocytic route. Many of the identified factors, including SH3BP4, ADAM9, and TMEM2, show stronger affinity to CoV2-RBD than to RBD of the less infective SARS-CoV, suggesting SARS-CoV-2-specific utilization. We also found factors preferentially binding to the RBD of the SARS-CoV-2 Delta variant, potentially enhancing its entry. These data identify the repertoire of host cell surface factors that function in the events leading to the entry of SARS-CoV-2.


Assuntos
Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Domínios Proteicos , Células HEK293 , COVID-19/metabolismo , COVID-19/virologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Interações Hospedeiro-Patógeno
2.
Int J Mol Sci ; 23(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36077120

RESUMO

How to fabricate bone tissue engineering scaffolds with excellent antibacterial and bone regeneration ability has attracted increasing attention. Herein, we produced a hierarchical porous ß-tricalcium phosphate (ß-TCP)/poly(lactic-co-glycolic acid)-polycaprolactone composite bone tissue engineering scaffold containing tetracycline hydrochloride (TCH) through a micro-extrusion-based cryogenic 3D printing of Pickering emulsion inks, in which the hydrophobic silica (h-SiO2) nanoparticles were used as emulsifiers to stabilize composite Pickering emulsion inks. Hierarchically porous scaffolds with desirable antibacterial properties and bone-forming ability were obtained. Grid scaffolds with a macroscopic pore size of 250.03 ± 75.88 µm and a large number of secondary micropores with a diameter of 24.70 ± 15.56 µm can be fabricated through cryogenic 3D printing, followed by freeze-drying treatment, whereas the grid structure of scaffolds printed or dried at room temperature was discontinuous, and fewer micropores could be observed on the strut surface. Moreover, the impartment of ß-TCP in scaffolds changed the shape and density of the micropores but endowed the scaffold with better osteoconductivity. Scaffolds loaded with TCH had excellent antibacterial properties and could effectively promote the adhesion, expansion, proliferation, and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells afterward. The scaffolds loaded with TCH could realize the strategy to "kill bacteria first, then induce osteogenesis". Such hierarchically porous scaffolds with abundant micropores, excellent antibacterial property, and improved bone-forming ability display great prospects in treating bone defects with infection.


Assuntos
Osteogênese , Engenharia Tecidual , Animais , Antibacterianos/farmacologia , Regeneração Óssea , Emulsões/farmacologia , Porosidade , Impressão Tridimensional , Ratos , Dióxido de Silício/farmacologia , Alicerces Teciduais/química
3.
J Biol Chem ; 295(49): 16643-16654, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32972971

RESUMO

The subcellular localization of Arf family proteins is generally thought to be determined by their corresponding guanine nucleotide exchange factors. By promoting GTP binding, guanine nucleotide exchange factors induce conformational changes of Arf proteins exposing their N-terminal amphipathic helices, which then insert into the membranes to stabilize the membrane association process. Here, we found that the N-terminal amphipathic motifs of the Golgi-localized Arf family protein, Arfrp1, and the endosome- and plasma membrane-localized Arf family protein, Arl14, play critical roles in spatial determination. Exchanging the amphipathic helix motifs between these two Arf proteins causes the switch of their localizations. Moreover, the amphipathic helices of Arfrp1 and Arl14 are sufficient for cytosolic proteins to be localized into a specific cellular compartment. The spatial determination mediated by the Arfrp1 helix requires its binding partner Sys1. In addition, the residues that are required for the acetylation of the Arfrp1 helix and the myristoylation of the Arl14 helix are important for the specific subcellular localization. Interestingly, Arfrp1 and Arl14 are recruited to their specific cellular compartments independent of GTP binding. Our results demonstrate that the amphipathic motifs of Arfrp1 and Arl14 are sufficient for determining specific subcellular localizations in a GTP-independent manner, suggesting that the membrane association and activation of some Arf proteins are uncoupled.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/genética , Sequência de Aminoácidos , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Conformação Proteica em alfa-Hélice , Alinhamento de Sequência , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA