Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 598(7881): 457-461, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34671138

RESUMO

Ocean dynamics in the equatorial Pacific drive tropical climate patterns that affect marine and terrestrial ecosystems worldwide. How this region will respond to global warming has profound implications for global climate, economic stability and ecosystem health. As a result, numerous studies have investigated equatorial Pacific dynamics during the Pliocene (5.3-2.6 million years ago) and late Miocene (around 6 million years ago) as an analogue for the future behaviour of the region under global warming1-12. Palaeoceanographic records from this time present an apparent paradox with proxy evidence of a reduced east-west sea surface temperature gradient along the equatorial Pacific1,3,7,8-indicative of reduced wind-driven upwelling-conflicting with evidence of enhanced biological productivity in the east Pacific13-15 that typically results from stronger upwelling. Here we reconcile these observations by providing new evidence for a radically different-from-modern circulation regime in the early Pliocene/late Miocene16 that results in older, more acidic and more nutrient-rich water reaching the equatorial Pacific. These results provide a mechanism for enhanced productivity in the early Pliocene/late Miocene east Pacific even in the presence of weaker wind-driven upwelling. Our findings shed new light on equatorial Pacific dynamics and help to constrain the potential changes they will undergo in the near future, given that the Earth is expected to reach Pliocene-like levels of warming in the next century.


Assuntos
Ecossistema , Água do Mar/química , Temperatura , Foraminíferos/classificação , Foraminíferos/isolamento & purificação , História Antiga , Concentração de Íons de Hidrogênio , Oceano Pacífico , Plâncton/classificação , Plâncton/isolamento & purificação , Movimentos da Água , Vento
2.
Proc Natl Acad Sci U S A ; 121(24): e2311980121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830092

RESUMO

Multiple abrupt warming events ("hyperthermals") punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ13C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation's sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ13C and δ18O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ13C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ13C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ13C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ13C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.

3.
Philos Trans A Math Phys Eng Sci ; 376(2130)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30177558

RESUMO

Geologically abrupt carbon perturbations such as the Palaeocene-Eocene Thermal Maximum (PETM, approx. 56 Ma) are the closest geological points of comparison to current anthropogenic carbon emissions. Associated with the rapid carbon release during this event are profound environmental changes in the oceans including warming, deoxygenation and acidification. To evaluate the global extent of surface ocean acidification during the PETM, we present a compilation of new and published surface ocean carbonate chemistry and pH reconstructions from various palaeoceanographic settings. We use boron to calcium ratios (B/Ca) and boron isotopes (δ11B) in surface- and thermocline-dwelling planktonic foraminifera to reconstruct ocean carbonate chemistry and pH. Our records exhibit a B/Ca reduction of 30-40% and a δ11B decline of 1.0-1.2‰ coeval with the carbon isotope excursion. The tight coupling between boron proxies and carbon isotope records is consistent with the interpretation that oceanic absorption of the carbon released at the onset of the PETM resulted in widespread surface ocean acidification. The remarkable similarity among records from different ocean regions suggests that the degree of ocean carbonate change was globally near uniform. We attribute the global extent of surface ocean acidification to elevated atmospheric carbon dioxide levels during the main phase of the PETM.This article is part of a discussion meeting issue 'Hyperthermals: rapid and extreme global warming in our geological past'.

4.
Sci Adv ; 9(4): eabq0110, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696500

RESUMO

Quantitative reconstructions of hydrological change during ancient greenhouse warming events provide valuable insight into warmer-than-modern hydrological cycles but are limited by paleoclimate proxy uncertainties. We present sea surface temperature (SST) records and seawater oxygen isotope (δ18Osw) estimates for the Middle Eocene Climatic Optimum (MECO), using coupled carbonate clumped isotope (Δ47) and oxygen isotope (δ18Oc) data of well-preserved planktonic foraminifera from the North Atlantic Newfoundland Drifts. These indicate a transient ~3°C warming across the MECO, with absolute temperatures generally in accordance with trace element (Mg/Ca)-based SSTs but lower than biomarker-based SSTs for the same interval. We find a transient ~0.5‰ shift toward higher δ18Osw, which implies increased salinity in the North Atlantic subtropical gyre and potentially a poleward expansion of its northern boundary in response to greenhouse warming. These observations provide constraints on dynamic ocean response to warming events, which are consistent with theory and model simulations predicting an enhanced hydrological cycle under global warming.

5.
Nat Commun ; 13(1): 3509, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717338

RESUMO

In the wake of rapid CO2 release tied to the emplacement of the Siberian Traps, elevated temperatures were maintained for over five million years during the end-Permian biotic crisis. This protracted recovery defies our current understanding of climate regulation via the silicate weathering feedback, and hints at a fundamentally altered carbon and silica cycle. Here, we propose that the development of widespread marine anoxia and Si-rich conditions, linked to the collapse of the biological silica factory, warming, and increased weathering, was capable of trapping Earth's system within a hyperthermal by enhancing ocean-atmosphere CO2 recycling via authigenic clay formation. While solid-Earth degassing may have acted as a trigger, subsequent biotic feedbacks likely exacerbated and prolonged the environmental crisis. This refined view of the carbon-silica cycle highlights that the ecological success of siliceous organisms exerts a potentially significant influence on Earth's climate regime.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Ciclo do Carbono , Dióxido de Silício
6.
Geobiology ; 20(2): 175-193, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34528380

RESUMO

The Neoproterozoic 'snowball Earth' hypothesis suggests that a runaway ice-albedo feedback led to two intense glaciations around 717-635 million years ago, and this global ice cover would have drastically impacted biogeochemical cycles. Testing the predictions of this hypothesis against the rock record is key to understanding Earth's surface evolution in the Neoproterozoic. A central tenet of the snowball Earth hypothesis is that extremely high atmospheric CO2  levels-supplied by volcanic degassing over millions of years-would be required to overcome a strong ice-albedo feedback and trigger deglaciation. This requires severely diminished continental weathering (and associated CO2 drawdown) during glaciation, and implies that carbonate minerals would not precipitate from syn-glacial seawater due to a lack of alkalinity influxes into ice-covered oceans. In this scenario, syn-glacial seawater chemistry should instead be dominated by chemical exchange with the oceanic crust and volcanic systems, developing low pH and low Mg/Ca ratios. However, sedimentary rocks deposited during the Sturtian glaciation from the Adelaide Fold Belt-and contemporaneous successions globally-show evidence for syn-sedimentary dolomite precipitation in glaciomarine environments. The dolomitic composition of these syn-glacial sediments and post-glacial 'cap carbonates' implies that carbonate precipitation and Mg cycling must have remained active during the ~50 million-year Sturtian glaciation. These syn-glacial carbonates highlight a gap in our understanding of continental weathering-and therefore, the carbon cycle-during snowball Earth. In light of these observations, a Precambrian global biogeochemical model (PreCOSCIOUS) was modified to explore scenarios of syn-glacial chemical weathering, ocean chemistry and Sturtian carbonate mineralogy. Modelling results suggest that a small degree of chemical weathering during glaciation would have been capable of maintaining high seawater Mg/Ca ratios and carbonate precipitation throughout the Sturtian glaciation. This is consistent with a severe ice age during the Sturtian, but challenges predictions of biogeochemical cycling during the endmember 'hard snowball' models. A small degree of continental weathering might also help explain the extreme duration of the Sturtian glaciation, which appears to have been the longest ice age in Earth history.


Assuntos
Planeta Terra , Camada de Gelo , Carbonatos/análise , Oceanos e Mares , Água do Mar/química
7.
Sci Adv ; 8(11): eabg1025, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35294237

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM) is recognized by a major negative carbon isotope (δ13C) excursion (CIE) signifying an injection of isotopically light carbon into exogenic reservoirs, the mass, source, and tempo of which continue to be debated. Evidence of a transient precursor carbon release(s) has been identified in a few localities, although it remains equivocal whether there is a global signal. Here, we present foraminiferal δ13C records from a marine continental margin section, which reveal a 1.0 to 1.5‰ negative pre-onset excursion (POE), and concomitant rise in sea surface temperature of at least 2°C and a decline in ocean pH. The recovery of both δ13C and pH before the CIE onset and apparent absence of a POE in deep-sea records suggests a rapid (< ocean mixing time scales) carbon release, followed by recovery driven by deep-sea mixing. Carbon released during the POE is therefore likely more similar to ongoing anthropogenic emissions in mass and rate than the main CIE.

8.
Science ; 367(6475): 266-272, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949074

RESUMO

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.


Assuntos
Ciclo do Carbono , Extinção Biológica , Erupções Vulcânicas , Dióxido de Carbono/análise , Aquecimento Global , México , Modelos Teóricos
9.
Artigo em Inglês | MEDLINE | ID: mdl-27114586

RESUMO

Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2 To this end, events in the geological past can provide informative case studies in the response of ecosystem function to environmental and ecological changes. Around the Cretaceous-Palaeogene (K-Pg) boundary, two such events occurred: Deccan large igneous province (LIP) eruptions and massive bolide impact at the Yucatan Peninsula. Both perturbed the environment, but only the impact coincided with marine mass extinction. As such, we use these events to directly contrast the response of marine biogeochemical cycling to environmental perturbation with and without changes in global species richness. We measure this biogeochemical response using records of deep-sea carbonate preservation. We find that Late Cretaceous Deccan volcanism prompted transient deep-sea carbonate dissolution of a larger magnitude and timescale than predicted by geochemical models. Even so, the effect of volcanism on carbonate preservation was slight compared with bolide impact. Empirical records and geochemical models support a pronounced increase in carbonate saturation state for more than 500 000 years following the mass extinction of pelagic carbonate producers at the K-Pg boundary. These examples highlight the importance of pelagic ecosystems in moderating climate and ocean chemistry.


Assuntos
Ciclo do Carbono , Ecossistema , Extinção Biológica , Oceanos e Mares , Água do Mar/química , Carbonatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA