Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(18): 3755-3757, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657417

RESUMO

The second week of embryonic development is a critical phase of the human life cycle and one that has been largely inaccessible to scientific investigation. Recent studies of human embryo models built from stem cells promise to yield dramatic insights into the key events of cell specification and morphogenesis that occur during this brief window of embryogenesis.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Gravidez , Animais , Humanos , Estágios do Ciclo de Vida , Morfogênese , Células-Tronco
2.
Cell ; 186(17): 3548-3557, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595564

RESUMO

A human embryo's legal definition and its entitlement to protection vary greatly worldwide. Recently, human pluripotent stem cells have been used to form in vitro models of early embryos that have challenged legal definitions and raised questions regarding their usage. In this light, we propose a refined legal definition of an embryo, suggest "tipping points" for when human embryo models could eventually be afforded similar protection to that of embryos, and then revisit basic ethical principles that might help to draft a roadmap for the gradual, justified usage of embryo models in a manner that aims to maximize benefits to society.


Assuntos
Pesquisas com Embriões , Embrião de Mamíferos , Humanos , Células-Tronco Pluripotentes , Pesquisas com Embriões/ética
3.
Nature ; 617(7962): 683-684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198461

Assuntos
Células-Tronco
4.
Cell ; 135(7): 1299-310, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19109898

RESUMO

Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. The lack of rat embryonic stem (ES) cells has restricted the availability of transgenic technologies to create genetic models in this species. Here, we show that rat ES cells can be efficiently derived, propagated, and genetically manipulated in the presence of small molecules that specifically inhibit GSK3, MEK, and FGF receptor tyrosine kinases. These rat ES cells express pluripotency markers and retain the capacity to differentiate into derivatives of all three germ layers. Most importantly, they can produce high rates of chimerism when reintroduced into early stage embryos and can transmit through the germline. Establishment of authentic rat ES cells will make possible sophisticated genetic manipulation to create models for the study of human diseases.


Assuntos
Blastocisto/citologia , Células-Tronco Embrionárias/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Quimera , Epigênese Genética , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Quinases da Glicogênio Sintase/antagonistas & inibidores , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Ratos , Ratos Endogâmicos , Transdução de Sinais
5.
Stem Cells ; 39(9): 1137-1144, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33932319

RESUMO

Nodal is a transforming growth factor-ß (TGF-ß) superfamily member that plays a number of critical roles in mammalian embryonic development. Nodal is essential for the support of the peri-implantation epiblast in the mouse embryo and subsequently acts to specify mesendodermal fate at the time of gastrulation and, later, left-right asymmetry. Maintenance of human pluripotent stem cells (hPSCs) in vitro is dependent on Nodal signaling. Because it has proven difficult to prepare a biologically active form of recombinant Nodal protein, Activin or TGFB1 are widely used as surrogates for NODAL in hPSC culture. Nonetheless, the expression of the components of an endogenous Nodal signaling pathway in hPSC provides a potential autocrine pathway for the regulation of self-renewal in this system. Here we review recent studies that have clarified the role of Nodal signaling in pluripotent stem cell populations, highlighted spatial restrictions on Nodal signaling, and shown that Nodal functions in vivo as a heterodimer with GDF3, another TGF-ß superfamily member expressed by hPSC. We discuss the role of this pathway in the maintenance of the epiblast and hPSC in light of these new advances.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes , Animais , Diferenciação Celular/fisiologia , Humanos , Proteína Nodal/genética , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
6.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216333

RESUMO

Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5' splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier.


Assuntos
Mutação/genética , Splicing de RNA/genética , Retina/patologia , Descolamento Retiniano/genética , Epitélio Pigmentado da Retina/patologia , Simportadores de Sódio-Bicarbonato/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Descolamento Retiniano/patologia , Tomografia de Coerência Óptica/métodos
7.
Development ; 144(11): 1923-1925, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28559237

RESUMO

In many jurisdictions, restrictions prohibit the culture of human embryos beyond 14 days of development. However, recent reports describing the successful maintenance of embryos in vitro to this stage have prompted many in the field to question whether the rule is still appropriate. This Spotlight article looks at the original rationale behind the 14-day rule and its relevance today in light of advances in human embryo culture and in the derivation of embryonic-like structures from human pluripotent stem cells.


Assuntos
Pesquisas com Embriões , Desenvolvimento Embrionário , Modelos Biológicos , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Estudos de Viabilidade , Humanos
10.
Development ; 142(18): 3090-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26395138

RESUMO

In the mouse, naïve pluripotent stem cells (PSCs) are thought to represent the cell culture equivalent of the late epiblast in the pre-implantation embryo, with which they share a unique defining set of features. Recent studies have focused on the identification and propagation of a similar cell state in human. Although the capture of an exact human equivalent of the mouse naïve PSC remains an elusive goal, comparative studies spurred on by this quest are lighting the path to a deeper understanding of pluripotent state regulation in early mammalian development.


Assuntos
Blastocisto/fisiologia , Linhagem da Célula/fisiologia , Desenvolvimento Embrionário/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camadas Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Blastocisto/citologia , Humanos , Camundongos , Especificidade da Espécie
11.
Nat Methods ; 12(10): 917-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26418764

RESUMO

Recent studies show that pluripotent stem cells can undergo self-organized development in vitro into structures that mimic the body plan of the post-implantation embryo. Modeling human embryogenesis in a dish opens up new possibilities for the study of early development and developmental disorders, but it may also raise substantial ethical concerns.


Assuntos
Pesquisas com Embriões/ética , Embrião de Mamíferos/citologia , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Pesquisas com Embriões/legislação & jurisprudência , Embrião de Mamíferos/fisiologia , Gástrula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos
12.
Biologicals ; 56: 67-83, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30150108

RESUMO

Sessions included an overview of past cell therapy (CT) conferences sponsored by the International Alliance for Biological Standardization (IABS). The sessions highlighted challenges in the field of human pluripotent stem cells (hPSCs) and also addressed specific points on manufacturing, bioanalytics and comparability, tumorigenicity testing, storage, and shipping. Panel discussions complemented the presentations. The conference concluded that a range of new standardization groups is emerging that could help the field, but ways must be found to ensure that these efforts are coordinated. In addition, there are opportunities for regulatory convergence starting with a gap analysis of existing guidelines to determine what might be missing and what issues might be creating divergence. More specific global regulatory guidance, preferably from WHO, would be welcome. IABS and the California Institute for Regenerative Medicine (CIRM) will explore with stakeholders the development of a practical and innovative road map to support early CT product (CTP) developers.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes , Testes de Carcinogenicidade , Guias como Assunto , Humanos , Controle de Qualidade , Medicina Regenerativa
13.
Biotechnol Bioeng ; 114(2): 260-280, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27531179

RESUMO

In vitro manipulation of human stem cells is a critical process in regenerative medicine and cellular therapies. Strategies and methods to maintain stem cells and direct them into specific lineages are ongoing challenges in these fields. To date, a number of studies have reported that besides biochemical stimulation, biophysical cues in the form of surface patterning and external stimulation also influence stem cell attachment, proliferation, and differentiation, and can be used in cell reprogramming and the maintenance of pluripotency. While biochemical cues are generally effective and easy to deliver, biophysical cues have many other advantages for scalability as they are cost efficient, have a longer lifetime, and can be easily defined. However, different protocols and cell sources utilized in a variety of studies have led to difficulties in obtaining clear conclusions about the effects of the biophysical environment on stem cells. In addition, the examination of different types of external stimulation is time consuming and limited by available fabrication techniques, resulting in a delay in commercialization and clinical applications. In this review, we aim to summarize the most important biophysical cues and methods for the culture of human stem cells, including mesenchymal and pluripotent stem cells, to facilitate their adoption in stem cell biology. The standard classical protocols of using biochemical cues will also be discussed for comparison. We believe that combining biochemical and biophysical stimulation has the greatest potential to generate functionally mature cells at a scalable and inexpensive rate for diverse applications in regenerative medicine and cell therapy. Biotechnol. Bioeng. 2017;114: 260-280. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Pesquisa com Células-Tronco , Engenharia Tecidual
14.
Stem Cells ; 33(6): 1759-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25753817

RESUMO

The caudal neural plate is a distinct region of the embryo that gives rise to major progenitor lineages of the developing central and peripheral nervous system, including neural crest and floor plate cells. We show that dual inhibition of the glycogen synthase kinase 3ß and activin/nodal pathways by small molecules differentiate human pluripotent stem cells (hPSCs) directly into a preneuroepithelial progenitor population we named "caudal neural progenitors" (CNPs). CNPs coexpress caudal neural plate and mesoderm markers, and, share high similarities to embryonic caudal neural plate cells in their lineage differentiation potential. Exposure of CNPs to BMP2/4, sonic hedgehog, or FGF2 signaling efficiently directs their fate to neural crest/roof plate cells, floor plate cells, and caudally specified neuroepithelial cells, respectively. Neural crest derived from CNPs differentiated to neural crest derivatives and demonstrated extensive migratory properties in vivo. Importantly, we also determined the key extrinsic factors specifying CNPs from human embryonic stem cell include FGF8, canonical WNT, and IGF1. Our studies are the first to identify a multipotent neural progenitor derived from hPSCs, that is the precursor for major neural lineages of the embryonic caudal neural tube.


Assuntos
Linhagem da Célula , Sistema Nervoso Central/citologia , Crista Neural/citologia , Células-Tronco Neurais/citologia , Tubo Neural/citologia , Sistema Nervoso Periférico/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Mesoderma/citologia , Camundongos Endogâmicos C57BL , Placa Neural/citologia , Células Neuroepiteliais/citologia , Ratos Sprague-Dawley
15.
Nature ; 465(7299): 713-20, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20535200

RESUMO

During early mammalian development, as the pluripotent cells that give rise to all of the tissues of the body proliferate and expand in number, they pass through transition states marked by a stepwise restriction in developmental potential and by changes in the expression of key regulatory genes. Recent findings show that cultured stem-cell lines derived from different stages of mouse development can mimic these transition states. They further reveal that there is a high degree of heterogeneity and plasticity in pluripotent populations in vitro and that these properties are modulated by extrinsic signalling. Understanding the extrinsic control of plasticity will guide efforts to use human pluripotent stem cells in research and therapy.


Assuntos
Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Fator Inibidor de Leucemia/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
17.
Optom Vis Sci ; 91(8): 887-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24859130

RESUMO

Age-related macular degeneration (AMD) is a leading cause of severe vision loss in the Western world and is increasing exponentially as the population ages. Despite enormous worldwide efforts, the earliest pathogenic pathways involved in AMD are still not fully understood. It is essential to develop research tools for effective modeling of AMD pathogenesis and for subsequent drug discovery and cell or molecular therapies. This review will focus on the current progress in human pluripotent stem cells for understanding and treating AMD.


Assuntos
Degeneração Macular/terapia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Degeneração Macular/etiologia
18.
Nat Commun ; 15(1): 1664, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395976

RESUMO

Stem cells exist in vitro in a spectrum of interconvertible pluripotent states. Analyzing hundreds of hiPSCs derived from different individuals, we show the proportions of these pluripotent states vary considerably across lines. We discover 13 gene network modules (GNMs) and 13 regulatory network modules (RNMs), which are highly correlated with each other suggesting that the coordinated co-accessibility of regulatory elements in the RNMs likely underlie the coordinated expression of genes in the GNMs. Epigenetic analyses reveal that regulatory networks underlying self-renewal and pluripotency are more complex than previously realized. Genetic analyses identify thousands of regulatory variants that overlapped predicted transcription factor binding sites and are associated with chromatin accessibility in the hiPSCs. We show that the master regulator of pluripotency, the NANOG-OCT4 Complex, and its associated network are significantly enriched for regulatory variants with large effects, suggesting that they play a role in the varying cellular proportions of pluripotency states between hiPSCs. Our work bins tens of thousands of regulatory elements in hiPSCs into discrete regulatory networks, shows that pluripotency and self-renewal processes have a surprising level of regulatory complexity, and suggests that genetic factors may contribute to cell state transitions in human iPSC lines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Redes Reguladoras de Genes , Cromatina/genética , Diferenciação Celular/genética , Fator 3 de Transcrição de Octâmero/genética
19.
Sci Adv ; 10(14): eadj9305, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569042

RESUMO

The power and scope of disease modeling can be markedly enhanced through the incorporation of broad genetic diversity. The introduction of pathogenic mutations into a single inbred mouse strain sometimes fails to mimic human disease. We describe a cross-species precision disease modeling platform that exploits mouse genetic diversity to bridge cell-based modeling with whole organism analysis. We developed a universal protocol that permitted robust and reproducible neural differentiation of genetically diverse human and mouse pluripotent stem cell lines and then carried out a proof-of-concept study of the neurodevelopmental gene DYRK1A. Results in vitro reliably predicted the effects of genetic background on Dyrk1a loss-of-function phenotypes in vivo. Transcriptomic comparison of responsive and unresponsive strains identified molecular pathways conferring sensitivity or resilience to Dyrk1a1A loss and highlighted differential messenger RNA isoform usage as an important determinant of response. This cross-species strategy provides a powerful tool in the functional analysis of candidate disease variants identified through human genetic studies.


Assuntos
Células-Tronco Pluripotentes , Animais , Camundongos , Humanos , Fenótipo
20.
Nat Methods ; 7(11): 885-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21030963

RESUMO

Retroviral marking of single human embryonic stem cells shows that cultures of these cells contain subpopulations with distinct functional properties.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA