Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16650-16657, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478168

RESUMO

The realization of multifunctional nanoparticle systems is essential to achieve highly efficient catalytic materials for specific applications; however, their production remains quite challenging. They are typically achieved through the incorporation of multiple inorganic components; however, incorporation of functionality could also be achieved at the organic ligand layer. In this work, we demonstrate the generation of multifunctional nanoparticle catalysts using peptide-based ligands for tandem catalytic functionality. To this end, chimeric peptides were designed that incorporated a Au binding sequence and a catalytic sequence that can drive ester hydrolysis. Using this chimera, Au nanoparticles were prepared, which sufficiently presented the catalytic domain of the peptide to drive tandem catalytic processes occurring at the peptide ligand layer and the Au nanoparticle surface. This work represents unique pathways to achieve multifunctionality from nanoparticle systems tuned by both the inorganic and bio/organic components, which could be highly important for applications beyond catalysis, including theranostics, sensing, and energy technologies.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Ligantes , Nanopartículas Metálicas/química , Peptídeos/química , Catálise
2.
J Mater Chem B ; 12(35): 8662-8671, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39110475

RESUMO

Two dimensional (2D) nanosheets of MoS2 were succesfully produced by an exfoliation process in aqueous media with the support from peptides and sonication. The exfoliation process assisted by uncapped MoSBP1 peptides was found to have enhanced efficiency in comparison to the capped counterpart. MoS2 nanosheets obtained using uncapped MoSBP1 have thinner structures containing one layer of MoS2, while in capped version of peptides, MoS2 nanosheets tend to form multilayer (up to 4) structures of exfoliated sheets. Molecular dynamics simulations indicate that inter-sheet gaps generated by sonication in MoS2 nanostacks cannot be maintained by water only; the gaps closed after ∼11 ns. Both capped CMoSBP1 and uncapped MoSBP1 were seen to spontaneously insert into the gap in nanostacks of MoS2 and they can ultimately maintain the inter-sheet gap for longer (≥20 ns). Potential of mean force profiles for the association of two MoS2 nanosheets decorated with CMoSBP1 and MoSBP1 versions of peptides revealed that uncapped MoSBP1 peptides provide good protection from MoS2 nanosheet re-unification. Such protection can prevent the nanosheets from reassociation and subsequent aggregation, whereas the capped CMoSBP1 peptides can offer protection, but over a shorter range. These simulation results could explain the experimental observation of greater efficiency of exfoliation in uncapped MoSBP1 peptides.


Assuntos
Dissulfetos , Simulação de Dinâmica Molecular , Molibdênio , Água , Molibdênio/química , Dissulfetos/química , Água/química , Nanoestruturas/química , Peptídeos/química
3.
J Mater Chem B ; 10(31): 6018-6025, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894139

RESUMO

The non-destructive functionalisation of graphene in aqueous media is a critical process with the potential to enhance the versatility of the 2D nanosheet material as a technological enabler. This could also unlock strategies for a wider uptake of graphene in bio-related applications. Graphene functionalisation can be achieved using peptides that specifically recognise the carbon-based material, resulting in persistent non-covalent adsorption without damaging the nanosheet. Bio-conjugation of non-natural moieties with these peptides can incorporate multifunctionality, further extending the applicability of these interfaces. Here, bio-conjugates comprising a graphene-binding peptide with a fatty acid chain of varying length are investigated for their binding affinity and adsorbed structures at the aqueous graphene interface. Through an integration of quartz crystal microbalance and atomic force microscopy data with advanced sampling molecular simulations, variations in the binding of these bio-conjugates is determined. Conjugation at either terminus led to good interfacial contact, and for a given attachment point, the changes in the fatty acid length did not substantially disrupt the conformations of the adsorbed peptide domain. These findings provide a solid foundation for designing multi-functional bio-interfaces for sensing and healthcare.


Assuntos
Grafite , Adsorção , Ácidos Graxos , Grafite/química , Peptídeos/química , Técnicas de Microbalança de Cristal de Quartzo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA