Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 77(4): 748-760.e9, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31785928

RESUMO

Mutations affecting exon 9 of the CALR gene lead to the generation of a C-terminally modified calreticulin (CALR) protein that lacks the KDEL endoplasmic reticulum (ER) retention signal and consequently mislocalizes outside of the ER where it activates the thrombopoietin receptor in a cell-autonomous fashion, thus driving myeloproliferative diseases. Here, we used the retention using selective hooks (RUSH) assay to monitor the trafficking of CALR. We found that exon-9-mutated CALR was released from cells in response to the biotin-mediated detachment from its ER-localized hook, in vitro and in vivo. Cellular CALR release was confirmed in suitable mouse models bearing exon-9-mutated hematopoietic systems or tumors. Extracellular CALR mediated immunomodulatory effects and inhibited the phagocytosis of dying cancer cells by dendritic cells (DC), thereby suppressing antineoplastic immune responses elicited by chemotherapeutic agents or by PD-1 blockade. Altogether, our results demonstrate paracrine immunosuppressive effects for exon-9-mutated CALR.


Assuntos
Calreticulina/genética , Tolerância Imunológica/genética , Mutação , Neoplasias/genética , Neoplasias/imunologia , Animais , Calreticulina/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose
2.
Nat Methods ; 20(10): 1553-1562, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640938

RESUMO

Molecular tools enabling the control and observation of the proximity of proteins are essential for studying the functional role of physical distance between two proteins. Here we present CATCHFIRE (chemically assisted tethering of chimera by fluorogenic-induced recognition), a chemically induced proximity technology with intrinsic fluorescence imaging and sensing capabilities. CATCHFIRE relies on genetic fusion to small dimerizing domains that interact upon addition of fluorogenic inducers of proximity that fluoresce upon formation of the ternary assembly, allowing real-time monitoring of the chemically induced proximity. CATCHFIRE is rapid and fully reversible and allows the control and tracking of protein localization, protein trafficking, organelle transport and cellular processes, opening new avenues for studying or controlling biological processes with high spatiotemporal resolution. Its fluorogenic nature allows the design of a new class of biosensors for the study of processes such as signal transduction and apoptosis.

3.
EMBO J ; 40(8): e107238, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33749896

RESUMO

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Assuntos
Proliferação de Células , Glicoesfingolipídeos/biossíntese , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transdução de Sinais
4.
EMBO Rep ; 23(10): e54605, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35979738

RESUMO

Radial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post-Golgi secretory pathway. Using in situ subcellular live imaging, we show that post-Golgi transport of RAB6+ vesicles occurs toward the minus ends of microtubules and depends on dynein. We demonstrate that the apical determinant Crumbs3 (CRB3) is also transported by dynein. Double knockout of RAB6A/A' and RAB6B impairs apical localization of CRB3 and induces a retraction of aRG cell apical process, leading to delamination and ectopic division. These defects are phenocopied by knockout of the dynein activator LIS1. Overall, our results identify a RAB6-dynein-LIS1 complex for Golgi to apical surface transport in aRG cells, and highlights the role of this pathway in the maintenance of neuroepithelial integrity.


Assuntos
Dineínas , Proteínas rab de Ligação ao GTP , Dineínas/genética , Dineínas/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Immunol ; 207(2): 421-435, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233909

RESUMO

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas de Membrana/imunologia , Animais , Endossomos/imunologia , Feminino , Genes MHC da Classe II/imunologia , Complexo de Golgi/imunologia , Imunidade Inata/imunologia , Mucosa Intestinal/imunologia , Canais Iônicos/imunologia , Linfócitos/imunologia , Lisossomos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th17/imunologia , Tretinoína/imunologia
6.
Mol Cell ; 60(1): 89-104, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431026

RESUMO

Hereditary spastic paraplegias (HSPs) are a diverse group of neurodegenerative diseases that are characterized by axonopathy of the corticospinal motor neurons. A mutation in the gene encoding for Tectonin ß-propeller containing protein 2 (TECPR2) causes HSP that is complicated by neurological symptoms. While TECPR2 is a human ATG8 binding protein and positive regulator of autophagy, the exact function of TECPR2 is unknown. Here, we show that TECPR2 associates with several trafficking components, among them the COPII coat protein SEC24D. TECPR2 is required for stabilization of SEC24D protein levels, maintenance of functional ER exit sites (ERES), and efficient ER export in a manner dependent on binding to lipidated LC3C. TECPR2-deficient HSP patient cells display alterations in SEC24D abundance and ER export efficiency. Additionally, TECPR2 and LC3C are required for autophagosome formation, possibly through maintaining functional ERES. Collectively, these results reveal that TECPR2 functions as molecular scaffold linking early secretion pathway and autophagy.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Paraplegia Espástica Hereditária/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Células HeLa , Humanos , Mutação , Proteínas do Tecido Nervoso/genética , Paraplegia Espástica Hereditária/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29807932

RESUMO

Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function.


Assuntos
Retículo Endoplasmático/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Sulfonamidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/fisiologia , Feminino , Complexo de Golgi/fisiologia , Humanos , Luz , Camundongos Endogâmicos C57BL , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/efeitos da radiação , Porfirinas/uso terapêutico , Sulfonamidas/efeitos da radiação , Sulfonamidas/uso terapêutico
8.
J Cell Sci ; 133(2)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996399

RESUMO

Microtubules are part of the dynamic cytoskeleton network and composed of tubulin dimers. They are the main tracks used in cells to organize organelle positioning and trafficking of cargos. In this Review, we compile recent findings on the involvement of microtubules in anterograde protein transport. First, we highlight the importance of microtubules in organelle positioning. Second, we discuss the involvement of microtubules within different trafficking steps, in particular between the endoplasmic reticulum and the Golgi complex, traffic through the Golgi complex itself and in post-Golgi processes. A large number of studies have assessed the involvement of microtubules in transport of cargo from the Golgi complex to the cell surface. We focus here on the role of kinesin motor proteins and protein interactions in post-Golgi transport, as well as the impact of tubulin post-translational modifications. Last, in light of recent findings, we highlight the role microtubules have in exocytosis, the final step of secretory protein transport, occurring close to focal adhesions.


Assuntos
Microtúbulos/metabolismo , Transporte Proteico/genética , Humanos
9.
Eur J Immunol ; 51(1): 180-190, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259646

RESUMO

Although the COVID-19 pandemic peaked in March/April 2020 in France, the prevalence of infection is barely known. Using high-throughput methods, we assessed herein the serological response against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of 1847 participants working in three sites of an institution in Paris conurbation. In May-July 2020, 11% (95% confidence interval [CI]: 9.7-12.6) of serums were positive for IgG against the SARS-CoV-2 N and S proteins, and 9.5% (95% CI: 8.2-11.0) were neutralizer in pseudo-typed virus assays. The prevalence of seroconversion was 11.6% (95% CI: 10.2-13.2) when considering positivity in at least one assay. In 5% of RT-qPCR positive individuals, no systemic IgGs were detected. Among immune individuals, 21% had been asymptomatic. Anosmia (loss of smell) and ageusia (loss of taste) occurred in 52% of the IgG-positive individuals and in 3% of the negative ones. In contrast, 30% of the anosmia-ageusia cases were seronegative, suggesting that the true prevalence of infection may have reached 16.6%. In sera obtained 4-8 weeks after the first sampling, anti-N and anti-S IgG titers and neutralization activity in pseudo-virus assay declined by 31%, 17%, and 53%, resulting thus in half-life of 35, 87, and 28 days, respectively. The population studied is representative of active workers in Paris. The short lifespan of the serological systemic responses suggests an underestimation of the true prevalence of infection.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pandemias , Paris/epidemiologia , Estudos Soroepidemiológicos , Fatores de Tempo
10.
EMBO J ; 33(2): 114-28, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24421324

RESUMO

γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Fuso Acromático/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Drosophila , Células HeLa , Humanos , Complexos Multiproteicos/fisiologia
11.
J Cell Sci ; 129(17): 3238-50, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27411366

RESUMO

The Golgi complex is responsible for processing and sorting of secretory cargos. Microtubules are known to accelerate the transport of proteins from the endoplasmic reticulum (ER) to the Golgi complex and from the Golgi to the plasma membrane. However, whether post-Golgi transport strictly requires microtubules is still unclear. Using the retention using selective hooks (RUSH) system to synchronize the trafficking of cargos, we show that anterograde transport of tumor necrosis factor (TNF) is strongly reduced without microtubules. We show that two populations of Golgi elements co-exist in these cells. A centrally located and giantin-positive Golgi complex that sustains trafficking, and newly formed peripheral Golgi mini-stacks that accumulate cargos in cells without microtubules. Using a genome-edited GFP-giantin cell line, we observe that the trafficking-competent Golgi population corresponds to the pre-existing population that was present before removal of microtubules. All Golgi elements support trafficking after long-term depletion of microtubules and after relocation of Golgi proteins to the ER after treatment with Brefeldin A. Our results demonstrate that functional maturation of Golgi elements is needed to ensure post-Golgi trafficking, and that microtubule-driven post-Golgi transport is not strictly required.


Assuntos
Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Endocitose , Células HeLa , Humanos , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
12.
Bioconjug Chem ; 29(6): 1823-1828, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29791141

RESUMO

Methods to differentially label cell-surface and intracellular membrane proteins are indispensable for understanding their function and the regulation of their trafficking. We present an efficient strategy for the rapid and selective fluorescent labeling of membrane proteins based on the chemical-genetic fluorescent marker FAST (fluorescence-activating and absorption-shifting tag). Cell-surface FAST-tagged proteins could be selectively and rapidly labeled using fluorogenic membrane-impermeant 4-hydroxybenzylidene rhodanine (HBR) analogs. This approach allows the study of protein trafficking at the plasma membrane with various fluorometric techniques, and opens exciting prospects for the high-throughput screening of small molecules able to restore disease-related trafficking defects.


Assuntos
Compostos de Benzilideno/metabolismo , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas de Membrana/metabolismo , Rodanina/análogos & derivados , Compostos de Benzilideno/análise , Membrana Celular/química , Corantes Fluorescentes/análise , Células HEK293 , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/análise , Microscopia de Fluorescência/métodos , Transporte Proteico , Rodanina/análise , Rodanina/metabolismo , Proteína Vermelha Fluorescente
14.
Semin Cell Dev Biol ; 45: 2-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26493704

RESUMO

Membrane damage is a daily threat to the life of a cell, especially cells from muscles, gut, epidermis and vasculature, tissues that are particularly subjected to mechanical stress. Damages can come from different sources and give rise to different holes in terms of size and nature. For example, while some holes are simply scratches in the lipid bilayer, others are delimited by pore forming proteins. It is thus expectable that these wounds will not evolve similarly in a cellular context, and that repair mechanisms will differ to a certain extent. It would therefore be misleading to fully generalize cell membrane damage and repair, and consider it as one universal phenomenon. Indeed, damage has been observed in cells ranging from the rather small mammalian cells (∼30µm) to the very big Urchin egg (∼100µm). Moreover, the wounds observed or artificially induced in eukaryotic cells range from some nanometers to several micrometers, and can be delimited by particular molecules as mentioned before. This chapter aims at reviewing the different physico-chemical and biological parameters that can influence wound evolution in cells and to conciliate the different repair mechanisms that have been described by evaluating them in their cellular and wound type context.


Assuntos
Membrana Celular/fisiologia , Cicatrização , Animais , Endocitose , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Exocitose , Humanos
15.
Hum Mol Genet ; 24(10): 2771-83, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652408

RESUMO

Dymeclin is a Golgi-associated protein whose deficiency causes Dyggve-Melchior-Clausen syndrome (DMC, MIM #223800), a rare recessively inherited spondyloepimetaphyseal dysplasia consistently associated with postnatal microcephaly and intellectual disability. While the skeletal phenotype of DMC patients has been extensively described, very little is known about their cerebral anomalies, which result in brain growth defects and cognitive dysfunction. We used Dymeclin-deficient mice to determine the cause of microcephaly and to identify defective mechanisms at the cellular level. Brain weight and volume were reduced in all mutant mice from postnatal day 5 onward. Mutant mice displayed a narrowing of the frontal cortex, although cortical layers were normally organized. Interestingly, the corpus callosum was markedly thinner, a characteristic we also identified in DMC patients. Consistent with this, the myelin sheath was thinner, less compact and not properly rolled, while the number of mature oligodendrocytes and their ability to produce myelin basic protein were significantly decreased. Finally, cortical neurons from mutant mice and primary fibroblasts from DMC patients displayed substantially delayed endoplasmic reticulum to Golgi trafficking, which could be fully rescued upon Dymeclin re-expression. These findings indicate that Dymeclin is crucial for proper myelination and anterograde neuronal trafficking, two processes that are highly active during postnatal brain maturation.


Assuntos
Nanismo/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Microcefalia/genética , Osteocondrodisplasias/congênito , Proteínas/genética , Animais , Pré-Escolar , Regulação para Baixo , Retículo Endoplasmático Rugoso/metabolismo , Feminino , Complexo de Golgi/metabolismo , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Mutantes , Mutação , Bainha de Mielina/genética , Bainha de Mielina/fisiologia , Osteocondrodisplasias/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia
16.
Biochem Biophys Res Commun ; 493(4): 1567-1572, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-29017919

RESUMO

Antibodies are essential reagents that are increasingly used in diagnostics and therapy. Their specificity and capacity to recognize their native antigen are critical characteristics for their in vivo application. Follicle-stimulating hormone receptor is a GPCR protein regulating ovarian follicular maturation and spermatogenesis. Recently, its potentiality as a cancer biomarker has been demonstrated but no antibody suitable for in vivo tumor targeting and treatment has been characterized so far. In this paper we describe the first successful attempt to recover recombinant antibodies against the FSHR and that: i) are directly panned from a pre-immune library using whole cells expressing the target receptor at their surface; ii) show inhibitory activity towards the FSH-induced cAMP accumulation; iii) do not share the same epitope with the natural binder FSH; iv) can be produced inexpensively as mono- or bivalent functional molecules in the bacterial cytoplasm. We expect that the proposed biopanning strategy will be profitable to identify useful functional antibodies for further members of the GPCR class.


Assuntos
Biblioteca de Peptídeos , Receptores do FSH/antagonistas & inibidores , Receptores do FSH/imunologia , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Animais , Especificidade de Anticorpos , AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante/farmacologia , Células HEK293 , Humanos , Imunização , Células L , Masculino , Camundongos , Domínios Proteicos , Receptores do FSH/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Transdução de Sinais , Solubilidade
17.
Chembiochem ; 18(4): 358-362, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-27905160

RESUMO

Chemical inducers that can control target-protein localization in living cells are powerful tools to investigate dynamic biological systems. We recently reported the retention using selective hook or "RUSH" system for reversible localization change of proteins of interest by addition/washout of small-molecule artificial ligands of streptavidin (ALiS). However, the utility of previously developed ALiS was restricted by limited solubility in water. Here, we overcame this problem by X-ray crystal structure-guided design of a more soluble ALiS derivative (ALiS-3), which retains sufficient streptavidin-binding affinity for use in the RUSH system. The ALiS-3-streptavidin interaction was characterized in detail. ALiS-3 is a convenient and effective tool for dynamic control of α-mannosidase II localization between ER and Golgi in living cells.


Assuntos
Ligantes , Modelos Moleculares , Ácidos Ftálicos/química , Transporte Proteico/fisiologia , Proteínas/metabolismo , Piridonas/química , Estreptavidina/química , Sulfonamidas/química , Sítios de Ligação , Cristalização , Humanos , Morfolinas/química , Morfolinas/metabolismo , Ácidos Ftálicos/farmacologia , Ligação Proteica , Proteínas/química , Piridonas/metabolismo , Piridonas/farmacologia , Siloxanas/química , Siloxanas/metabolismo , Solubilidade , Estreptavidina/metabolismo , Sulfonamidas/metabolismo
18.
Development ; 140(7): 1583-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23482493

RESUMO

CLIPR-59 is a new member of the cytoplasmic linker proteins (CLIP) family mainly localized to the trans-Golgi network. We show here that Clipr-59 expression in mice is restricted to specific pools of neurons, in particular motoneurons (MNs), and progressively increases from embryonic day 12.5 (E12.5) until the first postnatal days. We generated a Clipr-59 knockout mouse model that presents perinatal lethality due to respiratory defects. Physiological experiments revealed that this altered innervation prevents the normal nerve-elicited contraction of the mutant diaphragm that is reduced both in amplitude and fatigue-resistance at E18.5, despite unaffected functional muscular contractility. Innervation of the mutant diaphragm is not altered until E15.5, but is then partially lost in the most distal parts of the muscle. Ultrastructural observations of neuromuscular junctions (NMJs) in the distal region of the diaphragm reveal a normal organization, but a lower density of nerve terminals capped by terminal Schwann cells in E18.5 mutant when compared with control embryos. Similar defects in NMJ stability, with a hierarchy of severity along the caudo-rostral axis, are also observed in other muscles innervated by facial and spinal MNs in Clipr-59 mutant mice. Clipr-59 deficiency therefore affects axon maintenance but not axon guidance toward muscle targets. Thus, CLIPR-59 is involved in the stabilization of specific motor axons at the NMJ during mouse late embryogenesis and its role is crucial for mouse perinatal development.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Junção Neuromuscular/embriologia , Junção Neuromuscular/genética , Junção Neuromuscular/fisiologia , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Feminino , Idade Gestacional , Homeostase/genética , Homeostase/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Gravidez , Medula Espinal/embriologia , Medula Espinal/metabolismo
20.
J Am Chem Soc ; 137(33): 10464-7, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26261872

RESUMO

Artificial ligands of streptavidin (ALiS) with association constants of ∼10(6) M(-1) were discovered by high-throughput screening of our chemical library, and their binding characteristics, including X-ray crystal structure of the streptavidin complex, were determined. Unlike biotin and its derivatives, ALiS exhibits fast dissociation kinetics and excellent cell permeability. The streptavidin-ALiS system provides a novel, practical compound-dependent methodology for repeated reversible cycling of protein localization between intracellular organella.


Assuntos
Espaço Intracelular/metabolismo , Estreptavidina/metabolismo , Avaliação Pré-Clínica de Medicamentos , Cinética , Ligantes , Modelos Moleculares , Permeabilidade , Conformação Proteica , Transporte Proteico , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA