Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37494294

RESUMO

The roles of DNA methylation in invertebrates are poorly characterized, and critical data are missing for the phylum Annelida. We fill this knowledge gap by conducting the first genome-wide survey of DNA methylation in the deep-sea polychaetes dominant in deep-sea vents and seeps: Paraescarpia echinospica, Ridgeia piscesae, and Paralvinella palmiformis. DNA methylation calls were inferred from Oxford Nanopore sequencing after assembling high-quality genomes of these animals. The genomes of these worms encode all the key enzymes of the DNA methylation metabolism and possess a mosaic methylome similar to that of other invertebrates. Transcriptomic data of these polychaetes support the hypotheses that gene body methylation strengthens the expression of housekeeping genes and that promoter methylation acts as a silencing mechanism but not the hypothesis that DNA methylation suppresses the activity of transposable elements. The conserved epigenetic profiles of genes responsible for maintaining homeostasis under extreme hydrostatic pressure suggest DNA methylation plays an important adaptive role in these worms.


Assuntos
Anelídeos , Poliquetos , Animais , Epigenoma , Poliquetos/genética , Poliquetos/metabolismo , Perfilação da Expressão Gênica , Genoma , Metilação de DNA
2.
Proc Biol Sci ; 289(1970): 20212137, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259985

RESUMO

Vertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that results in a progressive reduction in genome size. While the evolutionary processes of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is rarely observed. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Here, we assessed the contributions of drift, recombination and selection to genome evolution in two extant vesicomyid symbiont clades by comparing 15 representative symbiont genomes (1.017-1.586 Mb) to those of closely related bacteria and the hosts' mitochondria. Our analyses suggest that drift is a significant force driving genome evolution in vesicomyid symbionts, though selection and interspecific recombination appear to be critical for maintaining symbiont functional integrity and creating divergent patterns of gene conservation. Notably, the two symbiont clades possess putative functional differences in sulfide physiology, anaerobic respiration and dependency on environmental vitamin B12, which probably reflect adaptations to different ecological habitats available to each symbiont group. Overall, these results contribute to our understanding of the eco-evolutionary processes shaping reductive genome evolution in vertically transmitted symbioses.


Assuntos
Bivalves , Gammaproteobacteria , Animais , Bactérias/genética , Bivalves/genética , Gammaproteobacteria/genética , Tamanho do Genoma , Genoma Bacteriano , Filogenia , Simbiose/genética
3.
Appl Environ Microbiol ; 82(17): 5197-205, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27316954

RESUMO

UNLABELLED: The symbiotic relationship between vestimentiferan tubeworms and their intracellular chemosynthetic bacteria is one of the more noteworthy examples of adaptation to deep-sea hydrothermal vent environments. The tubeworm symbionts have never been cultured in the laboratory. Nucleotide sequences from the small subunit rRNA gene suggest that the intracellular symbionts of the eastern Pacific vent tubeworms Oasisia alvinae, Riftia pachyptila, Tevnia jerichonana, and Ridgeia piscesae belong to the same phylotype of gammaproteobacteria, "Candidatus Endoriftia persephone." Comparisons of symbiont genomes between the East Pacific Rise tubeworms R. pachyptila and T. jerichonana confirmed that these two hosts share the same symbionts. Two Ridgeia symbiont genomes were assembled from trophosome metagenomes from worms collected from the Juan de Fuca Ridge (one and five individuals, respectively). We compared these assemblies to those of the sequenced Riftia and Tevnia symbionts. Pangenome composition, genome-wide comparisons of the nucleotide sequences, and pairwise comparisons of 2,313 orthologous genes indicated that "Ca Endoriftia persephone" symbionts are structured on large geographical scales but also on smaller scales and possibly through host specificity. IMPORTANCE: Remarkably, the intracellular symbionts of four to six species of eastern Pacific vent tubeworms all belong to the same phylotype of gammaproteobacteria, "Candidatus Endoriftia persephone." Understanding the structure, dynamism, and interconnectivity of "Ca Endoriftia persephone" populations is important to advancing our knowledge of the ecology and evolution of their host worms, which are often keystone species in vent communities. In this paper, we present the first genomes for symbionts associated with the species R. piscesae, from the Juan de Fuca Ridge. We then combine these genomes with published symbiont genomes from the East Pacific Rise tubeworms R. pachyptila and T. jerichonana to develop a portrait of the "Ca Endoriftia persephone" pangenome and an initial outline of symbiont population structure in the different host species. Our study is the first to apply genome-wide comparisons of "Ca Endoriftia persephone" assemblies in the context of population genetics and molecular evolution.


Assuntos
Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/fisiologia , Poliquetos/microbiologia , Animais , Biodiversidade , Evolução Biológica , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Especificidade de Hospedeiro , Fontes Hidrotermais/microbiologia , Poliquetos/classificação , Poliquetos/fisiologia , Água do Mar/microbiologia , Simbiose
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38531780

RESUMO

Previous studies have revealed tight metabolic complementarity between bivalves and their endosymbiotic chemosynthetic bacteria, but little is known about their interactions with ectosymbionts. Our analysis of the ectosymbiosis between a deep-sea scallop (Catillopecten margaritatus) and a gammaproteobacterium showed that bivalves could be highly interdependent with their ectosymbionts as well. Our microscopic observation revealed abundant sulfur-oxidizing bacteria (SOB) on the surfaces of the gill epithelial cells. Microbial 16S rRNA gene amplicon sequencing of the gill tissues showed the dominance of the SOB. An analysis of the SOB genome showed that it is substantially smaller than its free-living relatives and has lost cellular components required for free-living. Genomic and transcriptomic analyses showed that this ectosymbiont relies on rhodanese-like proteins and SOX multienzyme complex for energy generation, mainly on the Calvin-Benson-Bassham (CBB) cycle and peripherally on a phosphoenolpyruvate carboxylase for carbon assimilation. Besides, the symbiont encodes an incomplete tricarboxylic acid (TCA) cycle. Observation of the scallop's digestive gland and its nitrogen metabolism pathways indicates it does not fully rely on the ectosymbiont for nutrition. Analysis of the host's gene expression provided evidence that it could offer intermediates for the ectosymbiont to complete its TCA cycle and some amino acid synthesis pathways using exosomes, and its phagosomes, endosomes, and lysosomes might be involved in harvesting nutrients from the symbionts. Overall, our study prompts us to rethink the intimacy between the hosts and ectosymbionts in Bivalvia and the evolution of chemosymbiosis in general.


Assuntos
Bivalves , Pectinidae , Animais , Simbiose , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias , Genômica , Bivalves/microbiologia , Pectinidae/genética , Genoma Bacteriano , Filogenia
5.
Mitochondrial DNA B Resour ; 7(5): 786-788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558179

RESUMO

We report the complete circular mitochondrial genome of the hydrothermal vent polychaete Paralvinella palmiformis (Annelida: Terebellida: Alvinellidae). The mitochondrial genome is 16386 bp in length with a GC content of 38.8%. It contains 36 genes, including 13 protein-coding sequences, 2 rRNA and 21 tRNA genes.

6.
Sci Rep ; 12(1): 22232, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564432

RESUMO

The mytilid mussel Bathymodiolus thermophilus lives in the deep-sea hydrothermal vent regions due to its relationship with chemosynthetic symbiotic bacteria. It is well established that symbionts reside in the gill bacteriocytes of the mussel and can utilize hydrogen sulfide, methane, and hydrogen from the surrounding environment. However, it is observed that some mussel symbionts either possess or lack genes for hydrogen metabolism within the single-ribotype population and host mussel species level. Here, we found a hydrogenase cluster consisting of additional H2-sensing hydrogenase subunits in a complete genome of B. thermophilus symbiont sampled from an individual mussel from the East Pacific Rise (EPR9N). Also, we found methylated regions sparsely distributed throughout the EPR9N genome, mainly in the transposase regions and densely present in the rRNA gene regions. CRISPR diversity analysis confirmed that this genome originated from a single symbiont strain. Furthermore, from the comparative analysis, we observed variation in genome size, gene content, and genome re-arrangements across individual hosts suggesting multiple symbiont strains can associate with B. thermophilus. The ability to acquire locally adaptive various symbiotic strains may serve as an effective mechanism for successfully colonizing different chemosynthetic environments across the global oceans by host mussels.


Assuntos
Hidrogenase , Fontes Hidrotermais , Mytilidae , Animais , Hidrogenase/genética , Hidrogenase/metabolismo , Mytilidae/genética , Bactérias , Metano/metabolismo , Família Multigênica , Simbiose/genética , Brânquias/microbiologia
7.
ISME J ; 16(9): 2132-2143, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715703

RESUMO

The scaly-foot snail (Chrysomallon squamiferum) inhabiting deep-sea hydrothermal vents in the Indian Ocean relies on its sulphur-oxidising gammaproteobacterial endosymbionts for nutrition and energy. In this study, we investigate the specificity, transmission mode, and stability of multiple scaly-foot snail populations dwelling in five vent fields with considerably disparate geological, physical and chemical environmental conditions. Results of population genomics analyses reveal an incongruent phylogeny between the endosymbiont and mitochondrial genomes of the scaly-foot snails in the five vent fields sampled, indicating that the hosts obtain endosymbionts via horizontal transmission in each generation. However, the genetic homogeneity of many symbiont populations implies that vertical transmission cannot be ruled out either. Fluorescence in situ hybridisation of ovarian tissue yields symbiont signals around the oocytes, suggesting that vertical transmission co-occurs with horizontal transmission. Results of in situ environmental measurements and gene expression analyses from in situ fixed samples show that the snail host buffers the differences in environmental conditions to provide the endosymbionts with a stable intracellular micro-environment, where the symbionts serve key metabolic functions and benefit from the host's cushion. The mixed transmission mode, symbiont specificity at the species level, and stable intracellular environment provided by the host support the evolutionary, ecological, and physiological success of scaly-foot snail holobionts in different vents with unique environmental parameters.


Assuntos
Fontes Hidrotermais , Animais , Fontes Hidrotermais/microbiologia , Metagenômica , Filogenia , Caramujos/fisiologia , Simbiose/genética
8.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448690

RESUMO

Many foundation species in chemosynthesis-based ecosystems rely on environmentally acquired symbiotic bacteria for their survival. Hence, understanding the biogeographic distributions of these symbionts at regional scales is key to understanding patterns of connectivity and predicting resilience of their host populations (and thus whole communities). However, such assessments are challenging because they necessitate measuring bacterial genetic diversity at fine resolutions. For this purpose, the recently discovered clustered regularly interspaced short palindromic repeats (CRISPR) constitutes a promising new genetic marker. These DNA sequences harboured by about half of bacteria hold their viral immune memory, and as such, might allow discrimination of different lineages or strains of otherwise indistinguishable bacteria. In this study, we assessed the potential of CRISPR as a hypervariable phylogenetic marker in the context of a population genetic study of an uncultured bacterial species. We used high-throughput CRISPR-based typing along with multi-locus sequence analysis (MLSA) to characterize the regional population structure of the obligate but environmentally acquired symbiont species Candidatus Endoriftia persephone on the Juan de Fuca Ridge. Mixed symbiont populations of Ca. Endoriftia persephone were sampled across individual Ridgeia piscesae hosts from contrasting habitats in order to determine if environmental conditions rather than barriers to connectivity are more important drivers of symbiont diversity. We showed that CRISPR revealed a much higher symbiont genetic diversity than the other housekeeping genes. Several lines of evidence imply this diversity is indicative of environmental strains. Finally, we found with both CRISPR and gene markers that local symbiont populations are strongly differentiated across sites known to be isolated by deep-sea circulation patterns. This research showed the high power of CRISPR to resolve the genetic structure of uncultured bacterial populations and represents a step towards making keystone microbial species an integral part of conservation policies for upcoming mining operations on the seafloor.


Assuntos
Bactérias/classificação , Bactérias/genética , Sistemas CRISPR-Cas , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana/métodos , Ecossistema , Genes Bacterianos/genética , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose
9.
Ecol Evol ; 11(9): 4481-4493, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976824

RESUMO

Host-symbiont relationships in hydrothermal vent ecosystems, supported by chemoautotrophic bacteria as primary producers, have been extensively studied. However, the process by which densely populated co-occurring invertebrate hosts form symbiotic relationships with bacterial symbionts remains unclear. Here, we analyzed gill-associated symbiotic bacteria (gill symbionts) of five co-occurring hosts, three mollusks ("Bathymodiolus" manusensis, B. brevior, and Alviniconcha strummeri) and two crustaceans (Rimicaris variabilis and Austinograea alayseae), collected together at a single vent site in the Tonga Arc. We observed both different compositions of gill symbionts and the presence of unshared operational taxonomic units (OTUs). In addition, the total number of OTUs was greater for crustacean hosts than for mollusks. The phylogenetic relationship trees of gill symbionts suggest that γ-proteobacterial gill symbionts have coevolved with their hosts toward reinforcement of host specificity, while campylobacterial Sulfurovum species found across various hosts and habitats are opportunistic associates. Our results confirm that gill symbiont communities differ among co-occurring vent invertebrates and indicate that hosts are closely related with their gill symbiont communities. Considering the given resources available at a single site, differentiation of gill symbionts seems to be a useful strategy for obtaining nutrition and energy while avoiding competition among both hosts and gill symbionts.

10.
Evol Appl ; 13(6): 1262-1278, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32684958

RESUMO

Epigenetic processes manage gene expression and products in a real-time manner, allowing a single genome to display different phenotypes. In this paper, we discussed the relevance of assessing the different sources of epigenetic variation in natural populations. For a given genotype, the epigenetic variation could be environmentally induced or occur randomly. Strategies developed by organisms to face environmental fluctuations such as phenotypic plasticity and diversified bet-hedging rely, respectively, on these different sources. Random variation can also represent a proxy of developmental stability and can be used to assess how organisms deal with stressful environmental conditions. We then proposed the microbiome as an extension of the epigenotype of the host to assess the factors determining the establishment of the community of microorganisms. Finally, we discussed these perspectives in the applied context of conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA