RESUMO
Recently, hydrothermal carbonization emerges as the most viable option for the management of solid waste with high moisture content. Sludge derived hydrochar is used as an adsorbent for emerging contaminants or micro-pollutants in the domain of sustainability. Current study demonstrates the KOH activation of hydrochar produced from paper board mill sludge and evaluates its removal potential of a Non-steroidal anti-inflammatory drug, Diclofenac from aqueous solution. The activated hydrochars exhibited porous, spherical micro-structures with higher fraction of oxygenated functional groups paving way for the efficient adsorption of Diclofenac. The effect of initial Diclofenac concentration and contact time was ascertained using adsorption kinetics and isotherms. The adsorption kinetics exhibited second-order reaction for all adsorbents indicating higher coefficient of determination (R2 > 0.9). The Diclofenac adsorption on hydrochars followed Langmuir isotherm model with the post-activated hydrochar recording a highest adsorption capacity of 37.23 mg g-1 in 40 mg L-1 initial Diclofenac concentration at 15 h equilibrium time.
RESUMO
Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO) characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP), uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation) of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model) was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the "steady state kinetics" of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates) is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s) affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of "the product of interest" in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of "substrate concentration at maximum observed rate". The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes.