Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Evol Biol ; 30(9): 1644-1657, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28379613

RESUMO

Species radiations may be facilitated by phenotypic differences already present within populations, such as those arising through sex-specific development or developmental processes biased towards particular reproductive or trophic morphs. We sought to test this hypothesis by utilizing a comparative transcriptomic approach to contrast among- and within-species differentiation using three horned beetle species in the genus Onthophagus. These three species exhibit differences along three phenotypic axes reflective of much of the interspecific diversity present within the genus: horn location, polarity of sexual dimorphism and degree of nutritional sensitivity. Our approach combined de novo transcript assembly, assessment of amino acid substitutions (dN/dS) across orthologous gene pairs and integration of gene function and conditional gene expression data. We identified 17 genes across the three species pairs related to axis patterning, development and metabolism with dN/dS > 1 and detected elevated dN/dS in genes related to metabolism and biosynthesis in the most closely related species pair, which is characterized by a loss of nutritional polyphenism and a reversal of sexual dimorphism. Further, we found that genes that are conditionally expressed (i.e. as a function of sex, nutrition or body region) within one of our focal species also showed significantly stronger signals of positive or relaxed purifying selection between species divergent along the same morphological axis (i.e. polarity of sexual dimorphism, degree of nutritional sensitivity or location of horns). Our findings thus reveal a positive relationship between intraspecific differentiation due to condition-specific development and genetic divergences among species.


Assuntos
Besouros , Caracteres Sexuais , Transcriptoma , Animais , Feminino , Cornos , Masculino , Fenótipo
2.
Integr Comp Biol ; 53(5): 857-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980118

RESUMO

Little is known about the potential for rapid evolution in natural populations in response to the high rate of contemporary climatic change. Organisms that have evolved in environments that experience high variability across space and time are of particular interest as they may harbor genetic variation that can facilitate evolutionary response to changing conditions. Here we review what is known about genetic capacity for adaptation in the purple sea urchin, Strongylocentrotus purpuratus, a species that has evolved in the upwelling ecosystem of the Northeast Pacific Ocean. We also present new results testing for adaptation to local pH conditions in six populations from Oregon to southern California. We integrate data on 19,493 genetic polymorphisms with data on local pH conditions. We find correlations between allele frequency and rank average time spent at pH <7.8 in 318 single-nucleotide polymorphisms in 275 genes. Two of the genes most correlated with local pH are a protein associated with the cytoskeleton and a proton pump, with functional roles in maintenance of cell volume and with internal regulation of pH, respectively. Across all loci tested, high correlations with local pH were concentrated in genes related to transport of ions, biomineralization, lipid metabolism, and cell-cell adhesion, functional pathways important for maintaining homeostasis at low pH. We identify a set of seven genes as top candidates for rapid evolutionary response to acidification of the ocean. In these genes, the putative low-pH-adapted allele, based on allele frequencies in natural populations, rapidly increases in frequency in purple sea urchin larvae raised at low pH. We also found that populations from localities with high pH show a greater change in allele frequency toward putative low-pH-adapted alleles under experimental acidification, compared with low-pH populations, suggesting that both natural and artificial selection favor the same alleles for response to low pH. These results illustrate that purple sea urchins may be adapted to local pH and suggest that this species may possess the genetic capacity for rapid evolution in response to acidification. This adaptive capacity likely comes from standing genetic variation maintained in nature by balancing selection across the spatial and temporal environmental mosaic that characterizes the California Current Ecosystem.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Regulação da Expressão Gênica/genética , Variação Genética , Água do Mar/química , Strongylocentrotus purpuratus/genética , Movimentos da Água , Adaptação Biológica/fisiologia , Animais , California , Mudança Climática , Frequência do Gene , Concentração de Íons de Hidrogênio , Oregon , Oceano Pacífico , Polimorfismo Genético/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA