Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Sci ; 135(1)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859817

RESUMO

Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule fluorescence in situ hybridization (FISH) assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 (also known as SAMD4A and SAMD4B, respectively) affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA-binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial complex I inhibition upon exposure to rotenone, but not strong mitochondrial uncoupling upon exposure to CCCP, rapidly induced the dissolution of Smaug1 MLOs. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMP-activated protein kinase (AMPK). Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK-mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins. This article has an associated First Person interview with the first authors of the paper.


Assuntos
Proteínas Quinases Ativadas por AMP , Mitocôndrias , Proteínas Quinases Ativadas por AMP/genética , Núcleo Celular , Humanos , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Serina-Treonina Quinases TOR/genética
2.
Virol J ; 21(1): 135, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858684

RESUMO

The discovery of mimivirus in 2003 prompted the search for novel giant viruses worldwide. Despite increasing interest, the diversity and distribution of giant viruses is barely known. Here, we present data from a 2012-2022 study aimed at prospecting for amoebal viruses in water, soil, mud, and sewage samples across Brazilian biomes, using Acanthamoeba castellanii for isolation. A total of 881 aliquots from 187 samples covering terrestrial and marine Brazilian biomes were processed. Electron microscopy and PCR were used to identify the obtained isolates. Sixty-seven amoebal viruses were isolated, including mimiviruses, marseilleviruses, pandoraviruses, cedratviruses, and yaraviruses. Viruses were isolated from all tested sample types and almost all biomes. In comparison to other similar studies, our work isolated a substantial number of Marseillevirus and cedratvirus representatives. Taken together, our results used a combination of isolation techniques with microscopy, PCR, and sequencing and put highlight on richness of giant virus present in different terrestrial and marine Brazilian biomes.


Assuntos
Vírus Gigantes , Brasil , Vírus Gigantes/isolamento & purificação , Vírus Gigantes/genética , Vírus Gigantes/classificação , Vírus Gigantes/ultraestrutura , Filogenia , Reação em Cadeia da Polimerase , Acanthamoeba castellanii/virologia , Acanthamoeba castellanii/isolamento & purificação , Microbiologia do Solo , Esgotos/virologia , Análise de Sequência de DNA , Água do Mar/virologia , Microbiologia da Água
3.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125980

RESUMO

RNA polymerase II (Pol II) dysfunction is frequently implied in human disease. Understanding its functional mechanism is essential for designing innovative therapeutic strategies. To visualize its supra-molecular interactions with genes and nascent RNA, we generated a human cell line carrying ~335 consecutive copies of a recombinant ß-globin gene. Confocal microscopy showed that Pol II was not homogeneously concentrated around these identical gene copies. Moreover, Pol II signals partially overlapped with the genes and their nascent RNA, revealing extensive compartmentalization. Using a cell line carrying a single copy of the ß-globin gene, we also tested if the binding of catalytically dead CRISPR-associated system 9 (dCas9) to different gene regions affected Pol II transcriptional activity. We assessed Pol II localization and nascent RNA levels using chromatin immunoprecipitation and droplet digital reverse transcription PCR, respectively. Some enrichment of transcriptionally paused Pol II accumulated in the promoter region was detected in a strand-specific way of gRNA binding, and there was no decrease in nascent RNA levels. Pol II preserved its transcriptional activity in the presence of DNA-bound dCas9. Our findings contribute further insight into the complex mechanism of mRNA transcription in human cells.


Assuntos
RNA Polimerase II , Transcrição Gênica , Globinas beta , Humanos , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Globinas beta/genética , Globinas beta/metabolismo , DNA/metabolismo , DNA/genética , Regiões Promotoras Genéticas , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , RNA/genética , RNA/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linhagem Celular
4.
Inorg Chem ; 62(29): 11466-11486, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37441730

RESUMO

We report the synthesis and characterization of three novel Schiff bases (L1-L3) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with amines containing morpholine or piperidine moieties. These were reacted with CuCl2 and ZnCl2 yielding six new coordination compounds, with the general formula ML2, where M = Cu(II) or Zn(II) and L = L1-L3, which were all characterized by analytical, spectroscopic (Fourier transform infrared (FTIR), UV-visible absorption, nuclear magnetic resonance (NMR), or electron paramagnetic resonance (EPR)), and mass spectrometric techniques, as well as by single-crystal X-ray diffraction. In the solid state, two Cu(II) complexes, with L1 and L2, are obtained as dinuclear compounds, with relatively short Cu-Cu distances (3.146 and 3.171 Å for Cu2(L1)4 and Cu2(L2)4, respectively). The free ligands show moderate lipophilicity, while their complexes are more lipophilic. The pKa values of L1-L3 and formation constants of the complex (for ML and ML2) species were determined by spectrophotometric titrations, with the Cu(II) complexes showing higher stability than the Zn(II) complexes. EPR indicated the presence of several species in solution as pH varied and binding modes were proposed. The binding of the complexes to bovine serum albumin (BSA) was evaluated by fluorescence and circular dichroism (CD) spectroscopies. All complexes bind BSA, and as demonstrated by CD, the process takes several hours to reach equilibrium. The antiproliferative activity was evaluated in malignant melanoma cells (A375) and in noncancerous keratinocytes (HaCaT). All complexes display significant cytotoxicity (IC50 < 10 µM) but modest selectivity. The complexes show higher activity than the free ligands, the Cu(II) complexes being more active than the Zn(II) complexes, and approximately twice more cytotoxic than cisplatin. A Guava ViaCount assay corroborated the antiproliferative activity.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Bases de Schiff/química , Ligantes , Oxiquinolina/farmacologia , Zinco/química , Cobre/farmacologia , Cobre/química
5.
Inorg Chem ; 62(20): 7932-7953, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37154533

RESUMO

A series of mononuclear non-oxido vanadium(IV) complexes, [VIV(L1-4)2] (1-4), featuring tridentate bi-negative ONS chelating S-alkyl/aryl-substituted dithiocarbazate ligands H2L1-4, are reported. All the synthesized non-oxido VIV compounds are characterized by elemental analysis, spectroscopy (IR, UV-vis, and EPR), ESI-MS, as well as electrochemical techniques (cyclic voltammetry). Single-crystal X-ray diffraction studies of 1-3 reveal that the mononuclear non-oxido VIV complexes show distorted octahedral (1 and 2) or trigonal prismatic (3) arrangement around the non-oxido VIV center. EPR and DFT data indicate the coexistence of mer and fac isomers in solution, and ESI-MS results suggest a partial oxidation of [VIV(L1-4)2] to [VV(L1-4)2]+ and [VVO2(L1-4)]-; therefore, all these three complexes are plausible active species. Complexes 1-4 interact with bovine serum albumin (BSA) with a moderate binding affinity, and docking calculations reveal non-covalent interactions with different regions of BSA, particularly with Tyr, Lys, Arg, and Thr residues. In vitro cytotoxic activity of all complexes is assayed against the HT-29 (colon cancer) and HeLa (cervical cancer) cells and compared with the NIH-3T3 (mouse embryonic fibroblast) normal cell line by MTT assay and DAPI staining. The results suggest that complexes 1-4 are cytotoxic in nature and induce cell death in the cancer cell lines by apoptosis and that a mixture of VIV, VV, and VVO2 species could be responsible for the biological activity.


Assuntos
Complexos de Coordenação , Camundongos , Humanos , Animais , Complexos de Coordenação/química , Fibroblastos , Células HeLa , Vanádio/química , Quelantes , Ligantes
6.
Molecules ; 28(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764313

RESUMO

The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.

7.
J Biol Inorg Chem ; 27(1): 89-109, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34817681

RESUMO

We report the synthesis, characterization and biological screening of new chromone Schiff bases derived from the condensation of three 6-substituted-3-formyl-chromones with pyridoxal (HL1-3) and its Cu(II) complexes [Cu(L1-3)Cl], 1-3. For the 6-methyl derivative, HL2, the VIVO-complex [VO(L2)Cl] (5), as well as ternary Cu and VIVO complexes with 1,10-phenanthroline (phen), [Cu(L2)(phen)Cl] (4) and [VO(L2)(phen)Cl] (6), were also prepared and evaluated. Their stability in aqueous medium and radical scavenging activity toward DPPH are screened, with [Cu(L2)(phen)Cl] (4) showing hydrolytic stability and [VO(L2)(phen)Cl] (6) high radical scavenging activity. Spectroscopic studies establish bovine serum albumin (BSA), a model for HSA, as a potential reversible carrier of [Cu(L2)(phen)Cl] in blood with KBC ≈ 105 M-1. The cytotoxic activity of a group of compounds is evaluated against a panel of human cancer cell lines of different origin (ovary, cervix, brain and breast) and compared to normal cells. Our results indicate that Cu complexes are more cytotoxic than the ligands but not selective towards cancer cells. The most potent complexes (4 and 6) are further evaluated for their apoptotic potential, induction of reactive oxygen species (ROS) and genotoxicity. Both complexes efficiently triggered cell death through apoptosis as evaluated by DNA morphology and TUNEL assay, increased ROS formation as determined by DCFDA (2',7'-dichlorodihydrofluorescein diacetate) analysis, and induced genotoxic damage as visualized via COMET assay in all cancer cells under study. Therefore, 4 and 6 may be potential precursor anticancer molecules, yet they need to be targeted toward cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/química , Cromonas/farmacologia , Complexos de Coordenação/química , Cobre/química , Humanos , Fenantrolinas/química , Bases de Schiff/química , Bases de Schiff/farmacologia
8.
Chemistry ; 28(40): e202200105, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35486702

RESUMO

Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.


Assuntos
Compostos Organometálicos , Vanádio , Compostos Organometálicos/química , Fenantrolinas , Proteínas , Tripsina , Vanádio/química , Raios X
9.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743176

RESUMO

Colorectal cancer is the second leading cause of cancer-related mortality. Many current therapies rely on chemotherapeutic agents with poor specificity for tumor cells. The clinical success of cisplatin has prompted the research and design of a huge number of metal-based complexes as potential chemotherapeutic agents. In this study, two zinc(II) complexes, [ZnL2] and [ZnL(AcO)], where AcO is acetate and L is an organic compound combining 8-hydroxyquinoline and a benzothiazole moiety, were developed and characterized. Analytical and spectroscopic studies, namely, NMR, FTIR, and UV-Vis allowed us to establish the complexes' structures, demonstrating the ligand-binding versatility: tetradentate in [ZnL(AcO)] and bidentate in [ZnL2]. Complexes were screened in vitro using murine and human colon cancer cells cultured in 2D and 3D settings. In 2D cells, the IC50 values were <22 µM, while in 3D settings, much higher concentrations were required. [ZnL(AcO)] displayed more suitable antiproliferative properties than [ZnL2] and was chosen for further studies. Moreover, based on the weak selectivity of the zinc-based complex towards cancer cell lines in comparison to the non-tumorigenic cell line, its incorporation in long-blood-circulating liposomes was performed, aiming to improve its targetability. The resultant optimized liposomal nanoformulation presented an I.E. of 76% with a mean size under 130 nm and a neutral surface charge and released the metal complex in a pH-dependent manner. The antiproliferative properties of [ZnL(AcO)] were maintained after liposomal incorporation. Preliminary safety assays were carried out through hemolytic activity that never surpassed 2% for the free and liposomal forms of [ZnL(AcO)]. Finally, in a syngeneic murine colon cancer mouse model, while free [ZnL(AcO)] was not able to impair tumor progression, the respective liposomal nanoformulation was able to reduce the relative tumor volume in the same manner as the positive control 5-fluorouracil but, most importantly, using a dosage that was 3-fold lower. Overall, our results show that liposomes were able to solve the solubility issues of the new metal-based complex and target it to tumor sites.


Assuntos
Antineoplásicos , Neoplasias do Colo , Complexos de Coordenação , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Lipossomos , Camundongos , Zinco/química
10.
Biochem Soc Trans ; 49(6): 2903-2915, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34747968

RESUMO

Apoptosis dysfunction is associated with several malignancies, including cancer and autoimmune diseases. Apoptosis restoration could be an attractive therapeutic approach to those diseases. Mitochondrial outer membrane permeabilization is regarded as the point of no return in the 'classical' apoptosis triggering pathway. Cytoplasmic release of cytochrome c (cyt c), a mitochondrial electron transporter, is a prominent indicator of such critical step. Therefore, visualizing cyt c efflux in living cells is a convenient approach to address apoptosis triggering and monitor performance of apoptosis restoration strategies. Recent years have been prolific in the development of biosensors to visualize cyt c mitochondrial efflux in living cells, by fluorescence microscopy. These biosensors specifically detect endogenous, untagged cyt c, while showing efficient cellular uptake and reduced cell toxicity. A common aspect is their fluorescence quenching in the absence or presence of bound cyt c, resulting in two main biosensor types: 'turn ON' and 'turn OFF'. In some of these systems, fluorescence intensity of fluorophore-bound aptamers is enhanced upon cyt c binding. In others, cyt c binding to quantum dots quenches their fluorescence. In the present minireview, I describe these biosensors and briefly introduce some hypotheses that could be addressed using these novel tools.


Assuntos
Apoptose , Citocromos c/metabolismo , Técnicas Biossensoriais , Humanos , Mitocôndrias/metabolismo
11.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068969

RESUMO

The chemical modification of porphyran hydrocolloid is attempted, with the objective of enhancing its antioxidant and antimicrobial activities. Sulfated galactan porphyran is obtained from commercial samples of the red algae Porphyra dioica using Soxhlet extraction with water at 100 °C and precipitation with isopropyl alcohol. The extracted porphyran is then treated with modified L-tyrosines in aqueous medium in the presence of NaOH, at ca. 70 °C. The modified tyrosines L1 and L2 are prepared through a Mannich reaction with either thymol or 2,4-di-tert-butylphenol, respectively. While the reaction with 2,4-di-tert-butylphenol yields the expected tyrosine derivative, a mixture of products is obtained with thymol. The resulting polysaccharides are structurally characterized and the respective antioxidant and antimicrobial activities are determined. Porphyran treated with the N-(2-hydroxy-3,5-di-tert-butyl-benzyl)-L-tyrosine derivative, POR-L2, presents a noticeable superior radical scavenging and antioxidant activity compared to native porphyran, POR. Furthermore, it exhibited some antimicrobial activity against S. aureus. The surface morphology of films prepared by casting with native and modified porphyrans is studied by SEM/EDS. Both POR and POR-L2 present potential applicability in the production of films and washable coatings for food packaging with improved protecting characteristics.


Assuntos
Antioxidantes/farmacologia , Sefarose/análogos & derivados , Tirosina/química , Aerobiose , Anti-Infecciosos/farmacologia , Benzotiazóis/química , Compostos de Bifenilo/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Oxirredução , Picratos/química , Porphyra/química , Espectroscopia de Prótons por Ressonância Magnética , Sefarose/química , Sefarose/isolamento & purificação , Sefarose/farmacologia , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Ácidos Sulfônicos/química , Tirosina/síntese química
12.
Inorg Chem ; 59(19): 14042-14057, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32914971

RESUMO

The synthesis and characterization of one oxidoethoxidovanadium(V) [VVO(L1)(OEt)] (1) and two nonoxidovanadium(IV) complexes, [VIV(L2-3)2] (2 and 3), with aroylhydrazone ligands incorporating naphthalene moieties, are reported. The synthesized oxido and nonoxido vanadium complexes are characterized by various physicochemical techniques, and their molecular structures are solved by single crystal X-ray diffraction (SC-XRD). This revealed that in 1 the geometry around the vanadium atom corresponds to a distorted square pyramid, with a O4N coordination sphere, whereas that of the two nonoxido VIV complexes 2 and 3 corresponds to a distorted trigonal prismatic arrangement with a O4N2 coordination sphere around each "bare" vanadium center. In aqueous solution, the VVO moiety of 1 undergoes a change to VVO2 species, yielding [VVO2(L1)]- (1'), while the nonoxido VIV-compounds 2 and 3 are partly converted into their corresponding VIVO complexes, [VIVO(L2-3)(H2O)] (2' and 3'). Interaction of these VVO2, VIVO, and VIV systems with two model proteins, ubiquitin (Ub) and lysozyme (Lyz), is investigated through docking approaches, which suggest the potential binding sites: the interaction is covalent for species 2' and 3', with the binding to Glu16, Glu18, and Asp21 for Ub, and His15 for Lyz, and it is noncovalent for species 1', 2, and 3, with the surface residues of the proteins. The ligand precursors and complexes are also evaluated for their in vitro antiproliferative activity against ovarian (A2780) and prostate (PC3) human cancer cells and in normal fibroblasts (V79) to check the selectivity of the compounds for cancer cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Muramidase/metabolismo , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Ubiquitina/metabolismo , Vanádio/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Muramidase/química , Compostos Organometálicos/metabolismo , Neoplasias Ovarianas/patologia , Conformação Proteica , Ubiquitina/química
13.
Inorg Chem ; 59(13): 9116-9134, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32578983

RESUMO

The interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)n] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Fenantrolinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Cobre/química , Cobre/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Fenantrolinas/síntese química , Fenantrolinas/metabolismo , Ligação Proteica , Soroalbumina Bovina/metabolismo
14.
Molecules ; 24(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394747

RESUMO

The steady rise in the cancer burden and grim statistics set a vital need for new therapeutic solutions. Given their high efficiency, metallodrugs are quite appealing in cancer chemotherapy. This work examined the anticancer activity of an anti-trypanosomal ruthenium-based compound bearing the 5-nitrofuryl pharmacophore, [RuII(dmso)2(5-nitro-2-furaldehyde semicarbazone)] (abbreviated as RuNTF; dmso is the dimethyl sulfoxide ligand). The cytotoxicity of RuNTF was evaluated in vitro against ovarian adenocarcinoma, hormone-dependent breast adenocarcinoma, prostate carcinoma (grade IV) and V79 lung fibroblasts human cells. The activity of RuNTF was similar to the benchmark metallodrug cisplatin for the breast line and inactive against the prostate line and lung fibroblasts. Given the known role of serum protein binding in drug bioavailability and the distribution via blood plasma, this study assessed the interaction of RuNTF with human serum albumin (HSA) by circular dichroism (CD) and fluorescence spectroscopy. The fluorescence emission quenching from the HSA-Trp214 residue and the lifetime data upon RuNTF binding evidenced the formation of a 1:1 {RuNTF-albumin} adduct with log Ksv = (4.58 ± 0.01) and log KB = (4.55 ± 0.01). This is supported by CD data with an induced CD broad band observed at ~450 nm even after short incubation times. Importantly, the binding to either HSA or human apo-transferrin is beneficial to the cytotoxicity of the complex towards human cancer cells by enhancing the cytotoxic activity of RuNTF.


Assuntos
Proteínas Sanguíneas/química , Complexos de Coordenação/química , Rutênio/química , Semicarbazonas/química , Algoritmos , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas Sanguíneas/metabolismo , Dicroísmo Circular , Interações Medicamentosas , Humanos , Modelos Moleculares , Modelos Teóricos , Estrutura Molecular , Ligação Proteica , Rutênio/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo
15.
Biochim Biophys Acta Gen Subj ; 1861(2): 218-234, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27773706

RESUMO

BACKGROUND: To overcome the hurdles of cisplatin, majorly its toxicity and resistance, there has been extensive search for alternative anti-cancer metal-based compounds. Here, three Cu(II)-complexes, Cu(Sal-Gly)(phen), Cu(Sal-Gly)(pheamine), Cu(Sal-Gly)(phepoxy) are characterized for their interaction with DNA, cytotoxicity and mechanism of action. METHODS: The binding ability of the complexes to Calf-Thymus DNA was evaluated by competition fluorescence studies with thiazole-orange, UV-Vis and circular dichroism spectroscopic titrations. Cytotoxicity was evaluated by MTT analysis. The DNA damage was analyzed through cleavage of supercoiled DNA via agarose gel-electrophoresis, and 8-oxo-guanidine and É£H2AX staining in cells. Apoptosis was detected via DNA condensation/fragmentation, mitochondrial membrane potential, Annexin V staining and caspase 3/7 activity. Formation of reactive oxygen species was determined by DCFDA- and GSSG/GSH-analysis. RESULTS: Binding constants to DNA were evaluated as 1.7×106 (Cu(Sal-Gly)(phen)), 2.5×106 (Cu(Sal-Gly)(pheamine)) and 3.2×105 (Cu(Sal-Gly)(phepoxy)). All compounds induced DNA damage. Apoptosis was the main form of cell death. There was an increase in ROS, which is most likely responsible for the observed DNA-damage. Although the compounds were cytotoxic to all tested cancer cell lines, only Cu(Sal-Gly)(pheamine) displayed significantly lower toxicity towards non-cancer cells, its associated phenotypes differing from the other two Cu-complexes. Thus, Cu(Sal-Gly)(pheamine) was further assayed for molecular changes in response to drug treatment using a custom designed RT-qPCR array. Results showed that Harakiri was significantly upregulated. Presence of p53 was not required for apoptosis in response to Cu-complexes. CONCLUSIONS AND GENERAL SIGNIFICANCE: These Cu-complexes, namely Cu(Sal-Gly)(pheamine), may be considered promising anticancer agents with activity in cancer cells even with deficient p53 status.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Cobre/química , Células A549 , Animais , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Bovinos , Linhagem Celular Tumoral , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Inorg Chem ; 55(3): 1165-82, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26789655

RESUMO

A series of mononuclear non-oxido vanadium(IV) [V(IV)(L(1-4))2] (1-4), oxidoethoxido vanadium(V) [V(V)O(L(1-4))(OEt)] (5-8), and dinuclear µ-oxidodioxidodivanadium(V) [V(V)2O3(L(1))2] (9) complexes with tridentate aroylazine ligands are reported [H2L(1) = 2-furoylazine of 2-hydroxy-1-acetonaphthone, H2L(2) = 2-thiophenoylazine of 2-hydroxy-1-acetonaphthone, H2L(3) = 1-naphthoylazine of 2-hydroxy-1-acetonaphthone, H2L(4) = 3-hydroxy-2-naphthoylazine of 2-hydroxy-1-acetonaphthone]. The complexes are characterized by elemental analysis, by various spectroscopic techniques, and by single-crystal X-ray diffraction (for 2, 3, 5, 6, 8, and 9). The non-oxido V(IV) complexes (1-4) are quite stable in open air as well as in solution, and DFT calculations allow predicting EPR and UV-vis spectra and the electronic structure. The solution behavior of the [V(V)O(L(1-4))(OEt)] compounds (5-8) is studied confirming the formation of at least two different types of V(V) species in solution, monomeric corresponding to 5-8, and µ-oxidodioxidodivanadium [V(V)2O3(L(1-4))2] compounds. The µ-oxidodioxidodivanadium compound [V(V)2O3(L(1))2] (9), generated from the corresponding mononuclear complex [V(V)O(L(1))(OEt)] (5), is characterized in solution and in the solid state. The single-crystal X-ray diffraction analyses of the non-oxido vanadium(IV) compounds (2 and 3) show a N2O4 binding set and a trigonal prismatic geometry, and those of the V(V)O complexes 5, 6, and 8 and the µ-oxidodioxidodivanadium(V) (9) reveal that the metal center is in a distorted square pyramidal geometry with O4N binding sets. For the µ-oxidodioxidodivanadium species in equilibrium with 5-8 in CH2Cl2, no mixed-valence complexes are detected by chronocoulometric and EPR studies. However, upon progressive transfer of two electrons, two distinct monomeric V(IV)O species are detected and characterized by EPR spectroscopy and DFT calculations.

17.
Inorg Chem ; 55(17): 8407-21, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27551768

RESUMO

The substituted hydrazones H2L(1-4) (L(1-4) = dibasic tridentate ONO(2-) donor ligands) obtained by the condensation of 2-hydroxy-1-naphthaldehyde and 2-aminobenzoylhydrazine (H2hnal-abhz) (H2L(1)) , 2-hydroxy-1-naphthaldehyde and 2-hydroxybenzoylhydrazine (H2hnal-hbhz) (H2L(2)), 2-hydroxy-1-acetonaphthone and benzoylhydrazine (H2han-bhz) (H2L(3)), or 2-hydroxy-1-acetonaphthone and 2-aminobenzoylhydrazine (H2han-abhz) (H2L(4)) are prepared and characterized. Reaction of ammonium vanadate with the appropriate H2L(1-4) results in the formation of oxidoethoxidovanadium(V) [V(V)O(OEt)(L(1-4))] (1-4) complexes. All compounds are characterized in the solid state and in solution by spectroscopic techniques (IR, UV-vis, (1)H, (13)C, and (51)V NMR, and electrospray ionization mass spectrometry). Single-crystal X-ray diffraction analysis of 1, 3, and 4 confirms the coordination of the corresponding ligands in the dianionic (ONO(2-)) enolate tautomeric form. In solution, the structurally characterized [V(V)O(OEt)(L)] compounds transform into the monooxido-bridged divanadium(V,V) [(V(V)OL)2-µ-O] complexes, with the processes being studied by IR and (1)H, (13)C, and (51)V NMR. The density functional theory (DFT) calculated Gibbs free energy of reaction 2[V(V)O(OEt)(L(4))] + H2O ⇆ [(V(V)OL(4))2-µ-O] + 2EtOH is only 2-3 kcal mol(-1), indicating that the dinuclear complexes may form in a significant amount. The electrochemical behavior of the complexes is investigated by cyclic voltammetry, with the V(V)-V(IV) E1/2(red) values being in the range 0.27-0.44 V (vs SCE). Upon controlled potential electrolysis, the corresponding (L)(O)V(IV)-O-V(V)(O)(L) mixed-valence species are obtained upon partial reduction of the [(V(V)OL)2-µ-O] complexes formed in solution, and some spectroscopic characteristics of these dinuclear mixed-valence complexes are investigated using DFT calculations and by electron paramagnetic resonance (EPR), with the formation of V(IV)-O-V(V) species being confirmed by the observation of a 15-line pattern in the EPR spectra at room temperature.

18.
Beilstein J Org Chem ; 12: 732-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27340465

RESUMO

A camphor-derived sulfonimine with a conjugated carbonyl group, oxoimine 1 (O2SNC10H13O), reacts with amino acids (glycine, L-alanine, L-phenylalanine, L-leucine) to form a compound O2SNC10H13NC10H14NSO2 (2) which was characterized by spectroscopic means (MS and NMR) and supported by DFT calculations. The product, a single diastereoisomer, contains two oxoimine units connected by a -N= bridge, and thus has a structural analogy to the colored product Ruhemann´s purple obtained by the ninhydrin reaction with amino acids. A plausible reaction mechanism that involves zwitterions, a Strecker degradation of an intermediate imine and water-catalyzed tautomerizations was developed by means of DFT calculations on potential transition states.

19.
Coord Chem Rev ; 301: 24-48, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32226091

RESUMO

Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.

20.
Proc Natl Acad Sci U S A ; 108(51): 20802-7, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22135457

RESUMO

Cyclic nucleotide-regulated ion channels are present in bacteria, plants, vertebrates, and humans. In higher organisms, they are closely involved in signaling networks of vision and olfaction. Binding of cAMP or cGMP favors the activation of these ion channels. Despite a wealth of structural and studies, there is a lack of structural data describing the gating process in a full-length cyclic nucleotide-regulated channel. We used high-resolution atomic force microscopy (AFM) to directly observe the conformational change of the membrane embedded bacterial cyclic nucleotide-regulated channel MlotiK1. In the nucleotide-bound conformation, the cytoplasmic cyclic nucleotide-binding (CNB) domains of MlotiK1 are disposed in a fourfold symmetric arrangement forming a pore-like vestibule. Upon nucleotide-unbinding, the four CNB domains undergo a large rearrangement, stand up by ∼1.7 nm, and adopt a structurally variable grouped conformation that closes the cytoplasmic vestibule. This fully reversible conformational change provides insight into how CNB domains rearrange when regulating the potassium channel.


Assuntos
Mesorhizobium/metabolismo , Canais de Potássio/química , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Lipídeos de Membrana/química , Microscopia de Força Atômica/métodos , Mutação , Nucleotídeos Cíclicos/química , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA