Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Infect Dis ; 224(8): 1422-1431, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33534886

RESUMO

Plasmodium vivax malaria was thought to be rare in Africa, but an increasing number of P. vivax cases reported across Africa and in Duffy-negative individuals challenges this dogma. The genetic characteristics of P. vivax in Duffy-negative infections, the transmission of P. vivax in East Africa, and the impact of environments on transmission remain largely unknown. This study examined genetic and transmission features of P. vivax from 107 Duffy-negative and 305 Duffy-positive individuals in Ethiopia and Sudan. No clear genetic differentiation was found in P. vivax between the 2 Duffy groups, indicating between-host transmission. P. vivax from Ethiopia and Sudan showed similar genetic clusters, except samples from Khartoum, possibly due to distance and road density that inhibited parasite gene flow. This study is the first to show that P. vivax can transmit to and from Duffy-negative individuals and provides critical insights into the spread of P. vivax in sub-Saharan Africa.


Assuntos
Sistema do Grupo Sanguíneo Duffy/sangue , Eritrócitos/parasitologia , Malária Vivax/sangue , Plasmodium vivax/isolamento & purificação , África Oriental/epidemiologia , Sistema do Grupo Sanguíneo Duffy/genética , Pool Gênico , Variação Genética , Humanos , Malária Vivax/epidemiologia , Malária Vivax/genética , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Receptores de Superfície Celular/genética , Sudão
2.
Malar J ; 18(1): 340, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590661

RESUMO

BACKGROUND: G6PD enzyme deficiency is a common enzymatic X-linked disorder. Deficiency of the G6PD enzyme can cause free radical-mediated oxidative damage to red blood cells, leading to premature haemolysis. Treatment of Plasmodium vivax malaria with primaquine poses a potential risk of mild to severe acute haemolytic anaemia in G6PD deficient people. In this study, the prevalence and distribution of G6PD mutations were investigated across broad areas of Ethiopia, and tested the association between G6PD genotype and phenotype with the goal to provide additional information relevant to the use of primaquine in malaria treatment. METHODS: This study examined G6PD mutations in exons 3-11 for 344 febrile patient samples collected from seven sites across Ethiopia. In addition, the G6PD enzyme level of 400 febrile patient samples from Southwestern Ethiopia was determined by the CareStart™ biosensor. The association between G6PD phenotype and genotype was examined by Fisher exact test on a subset of 184 samples. RESULTS: Mutations were observed at three positions of the G6PD gene. The most common G6PD mutation across all sites was A376G, which was detected in 21 of 344 (6.1%) febrile patients. Thirteen of them were homozygous and eight were heterozygous for this mutation. The G267+119C/T mutation was found in 4 (1.2%) individuals in South Ethiopia, but absent in other sites. The G1116A mutation was also found in 4 (1.2%) individuals from East and South Ethiopia. For the 400 samples in the south, 17 (4.25%) were shown to be G6PD-deficient. G6PD enzyme level was not significantly different by age or gender. Among a subset of 202 febrile patients who were diagnosed with malaria, 11 (5.45%) were G6PD-deficient. These 11 infected samples were diagnosed with Plasmodium vivax by microscopy. Parasitaemia was not significantly different between the G6PD-deficient and G6PD-normal infections. CONCLUSIONS: The prevalence of G6PD deficiency is modest among febrile patients in Ethiopia. G6PD deficiency testing is thus recommended before administrating primaquine for radical cure of P. vivax infected patients. The present study did not indicate a significant association between G6PD gene mutations and enzyme levels.


Assuntos
Antimaláricos/uso terapêutico , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Malária Vivax/prevenção & controle , Primaquina/uso terapêutico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimaláricos/efeitos adversos , Criança , Pré-Escolar , Etiópia/epidemiologia , Feminino , Genótipo , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Prevalência , Primaquina/efeitos adversos , Adulto Jovem
3.
PLoS One ; 18(7): e0287668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471337

RESUMO

Plasmodium vivax Duffy Binding Protein (PvDBP) is essential for interacting with Duffy antigen receptor for chemokines (DARC) on the surface of red blood cells to allow invasion. Earlier whole genome sequence analyses provided evidence for the duplications of PvDBP. It is unclear whether PvDBP duplications play a role in recent increase of P. vivax in Sudan and in Duffy-negative individuals. In this study, the prevalence and type of PvDBP duplications, and its relationship to demographic and clinical features were investigated. A total of 200 malaria-suspected blood samples were collected from health facilities in Khartoum, River Nile, and Al-Obied. Among them, 145 were confirmed to be P. vivax, and 43 (29.7%) had more than one PvDBP copies with up to four copies being detected. Both the Malagasy and Cambodian types of PvDBP duplication were detected. No significant difference was observed between the two types of duplications between Duffy groups. Parasitemia was significantly higher in samples with the Malagasy-type than those without duplications. No significant difference was observed in PvDBP duplication prevalence and copy number among study sites. The functional significance of PvDBP duplications, especially those Malagasy-type that associated with higher parasitemia, merit further investigations.


Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Duplicação Gênica , Sudão/epidemiologia , Parasitemia/genética , Prevalência , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Vivax/epidemiologia , Malária Vivax/genética , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/metabolismo
4.
Respir Care ; 67(10): 1217-1225, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35701173

RESUMO

BACKGROUND: Little is known about the fate of expelled viral particulates during the aerosolization of inhaled medications during mechanical ventilation. We hypothesized that breathing patterns that generate a greater degree of shear stress and turbulent air flow will produce a greater concentration of exhaled viral RNA with the presence of a nebulizer during mechanical ventilation. METHODS: Eight ex vivo pig lungs were utilized as the physiological model. Each lung was dedicated to a specific breathing pattern that consisted of tidal breathing, respiratory distress, cough, and sneeze. Breath simulations were carried out through a commercial mechanical ventilator. Ninety mL of a bacteriophage stock at a concentration of 108 PFU/mL were introduced into the lungs during a 10-min sample collection session. The number of viral particles collected in exhalate was measured using quantitative polymerase chain reaction. The impact of breathing pattern on measured viruses was analyzed through two-way analysis of variance. RESULTS: The interaction effect between nebulization and breath pattern on exhaled viral quantity was not statistically significant P = .80, partial η2 = 0.167. The analysis of the main effects indicated that the effects of the breathing pattern and nebulization phase were not statistically significant P = .26, partial η2 = 0.519; P = .98, partial η2 = 0, respectively. There were no statistically significant differences among the breathing patterns related to measurable viral RNA. Coughing produced the most measurable increase in measured viral quantity during the nebulization phase and non-nebulization phase with a mean exhaled viral quantity (3.5 × 105 ng/µL [95% CI 1.6 × 105-5.5 × 105] and 2.7 × 105 ng/µL [95% CI 7.1 × 103-5.5 × 105], respectively). Tidal breathing with the presence of a nebulizer and respiratory distress without a nebulizer produced the lowest measured viral quantities (M = 1.1 × 105 ng/µL [95% CI -1.7 × 105 to 3.9 × 105]; M = 1.2 × 105 ng/µL [95% CI -1.6 × 105 to 4.0 × 105]). CONCLUSIONS: In this ex vivo porcine model, the introduction of a nebulizer did not increase the mean viral RNA captured throughout all of the breathing patterns.


Assuntos
Respiração Artificial , Síndrome do Desconforto Respiratório , Administração por Inalação , Animais , Desenho de Equipamento , Pulmão/fisiologia , Nebulizadores e Vaporizadores , RNA Viral , Respiração , Aerossóis e Gotículas Respiratórios , Suínos
5.
Artigo em Inglês | MEDLINE | ID: mdl-36619004

RESUMO

The identification and management of low parasitemia infections have become increasingly challenging for malaria control and elimination. Submicroscopic Plasmodium infections and G6PD deficiency among febrile patients require more sensitive diagnostic methods to improve detection and careful treatment regime of these infections. In Ethiopia, information on the low density submicroscopic malarial infections and frequency of G6PD deficiency (G6PDd) is scarce. In this study, 297 malaria suspected febrile patient samples were collected from health facilities of Bonga town in southwestern Ethiopia. The positivity rates of Plasmodium infection were determined by microscopy and quantitative PCR. G6PD activity level was determined by careSTART™ G6PD biosensor and the frequency of three common variants: G6PD*A (A376G), G6PD*A- (G202A) and Mediterranean (C563T) were investigated. G6PD gene sequencing was performed to detect mutations in exons 2-11 for both G6PD normal and deficient samples based on the phenotypic assay. More than twice Plasmodium infected samples was detected by qPCR (52/297; 17.4%) than microscopy (21/297; 7.0%). About 31 (10%) of the infections were submicroscopic. Bednet usage and age had a significant association with Plasmodium infection. Of the 271 participants who were tested for G6PD phenotype, 19 (7.0%) had low G6PD level. No mutations were observed in A376G, G202A, and C563T in the G6PDd samples, but three novel non-synonymous mutations in exon 2 including a C to T transition at position ChrX:6504 (Arg to Thr), G to T at ChrX:6369 (Ser to IIe), and G to C at ChrX:6664 (Gln to His) were detected. A high number of submicroscopic Plasmodium infections observed in this study pose a challenge for accurate and timely diagnosis, which could hinder malaria control efforts. G6PD deficiency in malaria patients pose danger when treating patients with primaquine. The three novel mutations detected in exon 2 of the G6PD gene merit further investigation on the hemolytic risk when exposed to oxidative antimalarials, their prevalence, and clinical significance.

6.
Int J Infect Dis ; 108: 63-71, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33991680

RESUMO

OBJECTIVES: Plasmodium vivax malaria was thought to be rare in Africans who lack the Duffy blood group antigen expression. However, recent studies indicate that P. vivax can infect Duffy-negative individuals and has spread into areas of high Duffy negativity across Africa. Our study compared epidemiological and genetic features of P. vivax between African regions. METHODS: A standardized approach was used to identify and quantify P. vivax from Botswana, Ethiopia, and Sudan, where Duffy-positive and Duffy-negative individuals coexist. The study involved sequencing the Duffy binding protein (DBP) gene and inferring genetic relationships among P. vivax populations across Africa. RESULTS: Among 1215 febrile patients, the proportions of Duffy negativity ranged from 20-36% in East Africa to 84% in southern Africa. Average P. vivax prevalence among Duffy-negative populations ranged from 9.2% in Sudan to 86% in Botswana. Parasite density in Duffy-negative infections was significantly lower than in Duffy-positive infections. P. vivax in Duffy-negative populations were not monophyletic, with P. vivax in Duffy-negative and Duffy-positive populations sharing similar DBP haplotypes and occurring in multiple, well-supported clades. CONCLUSIONS: Duffy-negative Africans are not resistant to P. vivax, and the public health significance of this should not be neglected. Our study highlights the need for a standardized approach and more resources/training directed towards the diagnosis of vivax malaria in Africa.


Assuntos
Malária Vivax , Plasmodium vivax , Sistema do Grupo Sanguíneo Duffy/genética , Variação Genética , Humanos , Malária Vivax/epidemiologia , Plasmodium vivax/genética , Receptores de Superfície Celular/genética , Sudão/epidemiologia
7.
Microorganisms ; 9(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374596

RESUMO

Plasmodium vivax malaria is a neglected tropical disease, despite being more geographically widespread than any other form of malaria. The documentation of P. vivax infections in different parts of Africa where Duffy-negative individuals are predominant suggested that there are alternative pathways for P. vivax to invade human erythrocytes. Duffy-negative individuals may be just as fit as Duffy-positive individuals and are no longer resistant to P.vivax malaria. In this review, we describe the complexity of P. vivax malaria, characterize pathogenesis and candidate invasion genes of P. vivax, and host immune responses to P. vivax infections. We provide a comprehensive review on parasite ligands in several Plasmodium species that further justify candidate genes in P. vivax. We also summarize previous genomic and transcriptomic studies related to the identification of ligand and receptor proteins in P. vivax erythrocyte invasion. Finally, we identify topics that remain unclear and propose future studies that will greatly contribute to our knowledge of P. vivax.

8.
Genes (Basel) ; 10(7)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315304

RESUMO

Malaria is a significant public health problem in Ghana. Seasonal Malaria Chemoprevention (SMC) using a combination of sulfadoxine-pyrimethamine and amodiaquine has been implemented since 2015 in northern Ghana where malaria transmission is intense and seasonal. In this study, we estimated the prevalence of asymptomatic P. falciparum carriers in three ecological zones of Ghana, and compared the sensitivity and specificity of different molecular methods in identifying asymptomatic infections. Moreover, we examined the frequency of mutations in pfcrt, pfmdr1,pfdhfr, and pfdhps that relate to the ongoing SMC. A total of 535 asymptomatic schoolchildren were screened by microscopy and PCR (18s rRNA and TARE-2) methods. Among all samples, 28.6% were detected as positive by 18S nested PCR, whereas 19.6% were detected by microscopy. A high PCR-based asymptomatic prevalence was observed in the north (51%) compared to in the central (27.8%) and south (16.9%). The prevalence of pfdhfr-N51I/C59R/S108N/pfdhps-A437G quadruple mutant associated with sulfadoxine-pyrimethamine resistance was significantly higher in the north where SMC was implemented. Compared to 18S rRNA, TARE-2 serves as a more sensitive molecular marker for detecting submicroscopic asymptomatic infections in high and low transmission settings. These findings establish a baseline for monitoring P. falciparum prevalence and resistance in response to SMC over time.


Assuntos
Resistência a Medicamentos , Genes de Protozoários , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Estações do Ano , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Doenças Assintomáticas , Quimioprevenção , Gana/epidemiologia , Haplótipos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Mutação , Prevalência , Vigilância em Saúde Pública , RNA Ribossômico 18S/genética , Sensibilidade e Especificidade
9.
Genes (Basel) ; 10(6)2019 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-31181786

RESUMO

Negative Duffy expression on the surface of human red blood cells was believed to be a barrier for Plasmodium vivax infection in most Africans. However, P. vivax has been demonstrated to infect Duffy-negative individuals in several Central and East African countries. In this study, we investigated the distribution of Duffy blood group phenotypes with regard to P. vivax infection and parasitemia in Sudan. Out of 992 microscopic-positive malaria samples, 190 were identified as P. vivax positive infections. Among them, 186 were P. vivax mono-infections and 4 were mixed P. vivax and Plasmodium falciparum infections. A subset of 77 samples was estimated with parasitemia by quantitative real-time PCR. Duffy codons were sequenced from the 190 P. vivax positive samples. We found that the Duffy Fy(a-b+) phenotype was the most prevalent, accounting for 67.9% of all P. vivax infections, while homozygous Duffy-negative Fy(a-b-) accounted for 17.9% of the P. vivax infections. The prevalence of infection in Fy(a-b+) and Fy(a+b-)were significantly higher than Fy(a-b-) phenotypes (p = 0.01 and p < 0.01, respectively). A significantly low proportion of P. vivax infection was observed in Duffy negative individuals Fy(a-b-). This study highlights the prevalence of P. vivax in Duffy-negatives in Sudan and indicates low parasitemia among the Duffy-negative individuals.


Assuntos
Sistema do Grupo Sanguíneo Duffy/sangue , Eritrócitos/parasitologia , Malária Vivax/sangue , Parasitemia/sangue , Adulto , Feminino , Humanos , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Masculino , Parasitemia/epidemiologia , Parasitemia/parasitologia , Fenótipo , Plasmodium falciparum/patogenicidade , Plasmodium vivax/genética , Plasmodium vivax/patogenicidade , Sudão/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA