Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32041869

RESUMO

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Assuntos
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolução Biológica , Membrana Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Phycodnaviridae , Plantas Geneticamente Modificadas , Potássio/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/metabolismo
2.
New Phytol ; 205(2): 627-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25266813

RESUMO

Genetically improving constitutive resin canal development in Pinus stems may enhance the capacity to synthesize terpenes for bark beetle resistance, chemical feedstocks, and biofuels. To discover genes that potentially regulate axial resin canal number (RCN), single nucleotide polymorphisms (SNPs) in 4027 genes were tested for association with RCN in two growth rings and three environments in a complex pedigree of 520 Pinus taeda individuals (CCLONES). The map locations of associated genes were compared with RCN quantitative trait loci (QTLs) in a (P. taeda × Pinus elliottii) × P. elliottii pseudo-backcross of 345 full-sibs (BC1). Resin canal number was heritable (h(2) ˜ 0.12-0.21) and positively genetically correlated with xylem growth (rg ˜ 0.32-0.72) and oleoresin flow (rg ˜ 0.15-0.51). Sixteen well-supported candidate regulators of RCN were discovered in CCLONES, including genes associated across sites and ages, unidirectionally associated with oleoresin flow and xylem growth, and mapped to RCN QTLs in BC1. Breeding is predicted to increase RCN 11% in one generation and could be accelerated with genomic selection at accuracies of 0.45-0.52 across environments. There is significant genetic variation for RCN in loblolly pine, which can be exploited in breeding for elevated terpene content.


Assuntos
Genes de Plantas , Pinus taeda/genética , Resinas Vegetais/química , Animais , Biocombustíveis , Besouros/fisiologia , Variação Genética , Pinus taeda/química , Pinus taeda/metabolismo , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Xilema/química , Xilema/metabolismo
3.
J Exp Bot ; 66(20): 6507-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246616

RESUMO

Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Populus/fisiologia , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/genética , Parede Celular/fisiologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Populus/genética , Tubulina (Proteína)/metabolismo
4.
New Phytol ; 199(1): 89-100, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23534834

RESUMO

Rapidly enhancing oleoresin production in conifer stems through genomic selection and genetic engineering may increase resistance to bark beetles and terpenoid yield for liquid biofuels. We integrated association genetic and genomic prediction analyses of oleoresin flow (g 24 h(-1)) using 4854 single nucleotide polymorphisms (SNPs) in expressed genes within a pedigreed population of loblolly pine (Pinus taeda) that was clonally replicated at three sites in the southeastern United States. Additive genetic variation in oleoresin flow (h(2) ≈ 0.12-0.30) was strongly correlated between years in which precipitation varied (r(a) ≈ 0.95), while the genetic correlation between sites declined from 0.8 to 0.37 with increasing differences in soil and climate among sites. A total of 231 SNPs were significantly associated with oleoresin flow, of which 81% were specific to individual sites. SNPs in sequences similar to ethylene signaling proteins, ABC transporters, and diterpenoid hydroxylases were associated with oleoresin flow across sites. Despite this complex genetic architecture, we developed a genomic prediction model to accelerate breeding for enhanced oleoresin flow that is robust to environmental variation. Results imply that breeding could increase oleoresin flow 1.5- to 2.4-fold in one generation.


Assuntos
Besouros , Pinus taeda/genética , Extratos Vegetais/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento/métodos , Clima , Interação Gene-Ambiente , Marcadores Genéticos , Variação Genética , Genética Populacional , Modelos Genéticos , Fenótipo , Pinus taeda/crescimento & desenvolvimento , Pinus taeda/fisiologia , Extratos Vegetais/genética , Solo , Sudeste dos Estados Unidos , Terpenos/metabolismo
5.
Plant Physiol ; 158(2): 708-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22123901

RESUMO

The Cellulose Synthase-Like D (CslD) genes have important, although still poorly defined, roles in cell wall formation. Here, we show an unexpected involvement of CslD1 from maize (Zea mays) in cell division. Both division and expansion were altered in the narrow-organ and warty phenotypes of the csld1 mutants. Leaf width was reduced by 35%, due mainly to a 47% drop in the number of cell files across the blade. Width of other organs was also proportionally reduced. In leaf epidermis, the deficiency in lateral divisions was only partially compensated by a modest, uniform increase in cell width. Localized clusters of misdivided epidermal cells also led to the formation of warty lesions, with cell clusters bulging from the epidermal layer, and some cells expanding to volumes 75-fold greater than normal. The decreased cell divisions and localized epidermal expansions were not associated with detectable changes in the cell wall composition of csld1 leaf blades or epidermal peels, yet a greater abundance of thin, dense walls was indicated by high-resolution x-ray tomography of stems. Cell-level defects leading to wart formation were traced to sites of active cell division and expansion at the bases of leaf blades, where cytokinesis and cross-wall formation were disrupted. Flow cytometry confirmed a greater frequency of polyploid cells in basal zones of leaf blades, consistent with the disruption of cytokinesis and/or the cell cycle in csld1 mutants. Collectively, these data indicate a previously unrecognized role for CSLD activity in plant cell division, especially during early phases of cross-wall formation.


Assuntos
Divisão Celular , Glucosiltransferases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Evolução Biológica , Glucosiltransferases/genética , Mutação , Filogenia , RNA Mensageiro/genética , Zea mays/citologia , Zea mays/enzimologia
6.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897455

RESUMO

Resistance to fusiform rust disease in loblolly pine (Pinus taeda) is a classic gene-for-gene system. Early resistance gene mapping in the P. taeda family 10-5 identified RAPD markers for a major fusiform rust resistance gene, Fr1. More recently, single nucleotide polymorphism (SNP) markers associated with resistance were mapped to a full-length gene model in the loblolly pine genome encoding for a nucleotide-binding site leucine-rich repeat (NLR) protein. NLR genes are one of the most abundant gene families in plant genomes and are involved in effector-triggered immunity. Inter- and intraspecies studies of NLR gene diversity and expression have resulted in improved disease resistance. To characterize NLR gene diversity and discover potential resistance genes, we assembled de novo transcriptomes from 92 loblolly genotypes from across the natural range of the species. In these transcriptomes, we identified novel NLR transcripts that are not present in the loblolly pine reference genome and found significant geographic diversity of NLR genes providing evidence of gene family evolution. We designed capture probes for these NLRs to identify and map SNPs that stably cosegregate with resistance to the SC20-21 isolate of Cronartium quercuum f.sp. fusiforme (Cqf) in half-sib progeny of the 10-5 family. We identified 10 SNPs and 2 quantitative trait loci associated with resistance to SC20-21 Cqf. The geographic diversity of NLR genes provides evidence of NLR gene family evolution in loblolly pine. The SNPs associated with rust resistance provide a resource to enhance breeding and deployment of resistant pine seedlings.


Assuntos
Basidiomycota , Pinus taeda , Basidiomycota/genética , Humanos , Pinus taeda/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
7.
Anal Chem ; 83(17): 6722-30, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21766865

RESUMO

Imaging applied toward lignocellulosic materials requires high molecular specificity to map specific compounds within intact tissue. Although secondary ionization mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) with a single stage of MS have been used to image lignocellulosic biomass, the complexity of the plant tissue requires tandem MS, which limits the interpretation of simple MS. MALDI linear ion trap (LIT) tandem MS offers the high molecular specificity needed for lignocellulosic analyses. MALDI-LIT MS analyses of cellulose and xylan (hemicellulose) standards were performed to determine mass-to-charge ratios and fragmentation pathways for identification of these compounds in intact tissue. The MALDI-LIT-MS images of young Populus wood stem showed even distribution of both cellulose and hemicellulose ions; in contrast, the tandem MS images of cellulose and hemicellulose generated by plotting characteristic fragment ions resulted in drastically different images. This demonstrates that isobaric ions are present during MALDI-LIT-MS analyses of wood tissue and tandem MS is necessary to distinguish between isobaric species for selective imaging of carbohydrates in biomass.


Assuntos
Celulose/química , Populus/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lignina/química
8.
New Phytol ; 182(4): 878-890, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19291008

RESUMO

The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration, biofuels and other wood-based industries. It is also unclear how environmental cues, such as nitrogen availability, impact the genes that regulate growth, biomass allocation and wood composition in trees. We phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above- and below-ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Sixty-three quantitative trait loci were identified for the 20 traits analyzed. The majority of quantitative trait loci are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and quantitative trait loci co-localization identified the genomic position of potential pleiotropic regulators. Pleiotropic loci linking higher growth rates to wood with less lignin are excellent targets to engineer tree germplasm improved for pulp, paper and cellulosic ethanol production. The causative genes are being identified with a genetical genomics approach.


Assuntos
Biomassa , Nitrogênio/farmacologia , Populus/crescimento & desenvolvimento , Populus/genética , Madeira/química , Madeira/genética , Células Clonais , Fertilizantes , Ligação Genética , Espectrometria de Massas , Fenótipo , Brotos de Planta/crescimento & desenvolvimento , Populus/efeitos dos fármacos , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
9.
Front Plant Sci ; 9: 1672, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515179

RESUMO

Plants evolved the capacity to synthesize highly diverse sets of secondary metabolites which are important for plant adaptation and health. In forest trees, many classes of compounds, particularly ones related to defense against insects, fungi, and bacteria accumulate to levels that enable their recovery and commercial use. One of the oldest examples is conifer terpenes, but terpenes are important secondary products from other tree species including eucalypts. Because terpenes, latex, and natural gums are synthesized and stored in specialized secretory glands, ducts, and laticifers in mostly pure forms they can be collected from live trees in addition to being extracted during industrial processing of wood. This minireview describes the potential of breeding and genetic engineering approaches to increase the quantities of terpene secondary metabolites to increase the amount of secondary products and thereby increasing the value of planted and managed forest trees. I advance the view that breeding and genetic engineering of metabolic pathways and specialized cell secretory structures can dramatically increase tissue terpene content.

10.
Ultrasound Med Biol ; 33(11): 1805-17, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17602827

RESUMO

To assess the cell wall's role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare directly the effects of electroporation and sonication in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it nonspecifically disrupts cell-surface barriers.


Assuntos
Parede Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Eletroporação/métodos , Sonicação , Acústica , Animais , Permeabilidade da Membrana Celular/fisiologia , Parede Celular/fisiologia , Chlamydomonas reinhardtii/genética , Fluoresceínas/farmacocinética , Potenciais da Membrana/fisiologia , Mutação , Soroalbumina Bovina/farmacocinética
11.
Trends Biotechnol ; 35(3): 227-240, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27622303

RESUMO

Research toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit, including annotated genomes, high-throughput omics profiling, and genome editing, have begun to elucidate plant terpene metabolism, and such information is useful for bioengineering metabolic pathways for specific terpenes. We review here the status of terpenes as a specialty biofuel and discuss the potential of plants as a viable agronomic solution for future terpene-derived biofuels.


Assuntos
Bioengenharia , Biocombustíveis , Plantas/química , Terpenos , Terpenos/química , Terpenos/metabolismo
12.
J Agric Food Chem ; 64(5): 1079-86, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26771201

RESUMO

Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (µCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.


Assuntos
Glycine max/química , Sementes/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Óleos de Plantas/química , Proteínas de Plantas/química
13.
BMC Genomics ; 6: 61, 2005 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15871737

RESUMO

BACKGROUND: The need to perform microarray experiments with small amounts of tissue has led to the development of several protocols for amplifying the target transcripts. The use of different amplification protocols could affect the comparability of microarray experiments. RESULTS: Here we compare expression data from Pinus taeda cDNA microarrays using transcripts amplified either exponentially by PCR or linearly by T7 transcription. The amplified transcripts vary significantly in estimated length, GC content and expression depending on amplification technique. Amplification by T7 RNA polymerase gives transcripts with a greater range of lengths, greater estimated mean length, and greater variation of expression levels, but lower average GC content, than those from PCR amplification. For genes with significantly higher expression after T7 transcription than after PCR, the transcripts were 27% longer and had about 2 percentage units lower GC content. The correlation of expression intensities between technical repeats was high for both methods (R2 = 0.98) whereas the correlation of expression intensities using the different methods was considerably lower (R2 = 0.52). Correlation of expression intensities between amplified and unamplified transcripts were intermediate (R2 = 0.68-0.77). CONCLUSION: Amplification with T7 transcription better reflects the variation of the unamplified transcriptome than PCR based methods owing to the better representation of long transcripts. If transcripts of particular interest are known to have high GC content and are of limited length, however, PCR-based methods may be preferable.


Assuntos
Biologia Computacional/métodos , DNA Complementar/metabolismo , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Arabidopsis/genética , Primers do DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Genoma de Planta , Técnicas de Amplificação de Ácido Nucleico , Pinus taeda/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Proteínas Virais/metabolismo
14.
G3 (Bethesda) ; 5(8): 1685-94, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26068575

RESUMO

A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via genotyping of 1251 individuals from four pedigrees. It is the densest linkage map for a conifer to date. Average marker spacing was 0.6 cM and total map length was 2305 cM. Functional predictions of mapped genes were improved by aligning expressed sequence tags used for marker discovery to full-length P. taeda transcripts. Alignments to the P. taeda genome mapped 3305 scaffold sequences onto 12 linkage groups. The consensus genetic map was used to compare the genome-wide linkage disequilibrium in a population of distantly related P. taeda individuals (ADEPT2) used for association genetic studies and a multiple-family pedigree used for genomic selection (CCLONES). The prevalence and extent of LD was greater in CCLONES as compared to ADEPT2; however, extended LD with LGs or between LGs was rare in both populations. The average squared correlations, r(2), between SNP alleles less than 1 cM apart were less than 0.05 in both populations and r(2) did not decay substantially with genetic distance. The consensus map and analysis of linkage disequilibrium establish a foundation for comparative association mapping and genomic selection in P. taeda and P. elliottii.


Assuntos
Desequilíbrio de Ligação/genética , Pinus/genética , Algoritmos , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genoma de Planta , Genótipo , Linhagem , Fenótipo , Pinus taeda/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Transcriptoma
15.
Genetics ; 198(4): 1759-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25324160

RESUMO

The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies.


Assuntos
Genômica , Padrões de Herança , Modelos Genéticos , Algoritmos , Cruzamento , Cruzamentos Genéticos , Marcadores Genéticos , Genômica/métodos , Linhagem , Pinus taeda/genética
16.
J Agric Food Chem ; 61(46): 10872-80, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24143871

RESUMO

Maize kernel density affects milling quality of the grain. Kernel density of bulk samples can be predicted by near-infrared reflectance (NIR) spectroscopy, but no accurate method to measure individual kernel density has been reported. This study demonstrates that individual kernel density and volume are accurately measured using X-ray microcomputed tomography (µCT). Kernel density was significantly correlated with kernel volume, air space within the kernel, and protein content. Embryo density and volume did not influence overall kernel density. Partial least-squares (PLS) regression of µCT traits with single-kernel NIR spectra gave stable predictive models for kernel density (R(2) = 0.78, SEP = 0.034 g/cm(3)) and volume (R(2) = 0.86, SEP = 2.88 cm(3)). Density and volume predictions were accurate for data collected over 10 months based on kernel weights calculated from predicted density and volume (R(2) = 0.83, SEP = 24.78 mg). Kernel density was significantly correlated with bulk test weight (r = 0.80), suggesting that selection of dense kernels can translate to improved agronomic performance.


Assuntos
Sementes/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Microtomografia por Raio-X/métodos , Zea mays/química
17.
Mol Plant ; 4(2): 331-45, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21300756

RESUMO

Genetic manipulation of cellulose biosynthesis in trees may provide novel insights into the growth and development of trees. To explore this possibility, the overexpression of an aspen secondary wall-associated cellulose synthase (PtdCesA8) gene was attempted in transgenic aspen (Populus tremuloides L.) and unexpectedly resulted in silencing of the transgene as well as its endogenous counterparts. The main axis of the transgenic aspen plants quickly stopped growing, and weak branches adopted a weeping growth habit. Furthermore, transgenic plants initially developed smaller leaves and a less extensive root system. Secondary xylem (wood) of transgenic aspen plants contained as little as 10% cellulose normalized to dry weight compared to 41% cellulose typically found in normal aspen wood. This massive reduction in cellulose was accompanied by proportional increases in lignin (35%) and non-cellulosic polysaccharides (55%) compared to the 22% lignin and 36% non-cellulosic polysaccharides in control plants. The transgenic stems produced typical collapsed or 'irregular' xylem vessels that had altered secondary wall morphology and contained greatly reduced amounts of crystalline cellulose. These results demonstrate the fundamental role of secondary wall cellulose within the secondary xylem in maintaining the strength and structural integrity required to establish the vertical growth habit in trees.


Assuntos
Celulose/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Populus/genética
18.
Plant Cell Rep ; 26(2): 133-43, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16941104

RESUMO

During loblolly pine zygotic embryo development, increases in mRNAs for three ABA-responsive LEA-like genes coincided with the two developmental stage-specific peaks of endogenous ABA accumulation (Kapik et al. 1995). These ABA concentration profiles from zygotic embryo development were used to develop several tissue culture approaches that altered the exposure of somatic embryos to exogenous ABA. Elevating exogenous ABA at a time corresponding to mid-maturation improved the germination and resulted in more zygotic-like expression of selected genes in somatic embryos. Extending the time on maturation medium for a fourth month increased embryo yield, dry weight, and germination in high-and low-yield genotypes. Optimizing the amounts of embryogenic suspension, plated and exogenous ABA concentration increased from 22 to 66% in the early-stage bipolar embryos that developed to the cotyledonary stage.


Assuntos
Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Pinus taeda/embriologia , Pinus taeda/genética , Reguladores de Crescimento de Plantas/farmacologia , DNA Complementar , Perfilação da Expressão Gênica , Genes de Plantas , Pinus taeda/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA