Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 275: 120184, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230204

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) can modulate neural activity by evoking action potentials in cortical neurons. TMS neural activation can be predicted by coupling subject-specific head models of the TMS-induced electric field (E-field) to populations of biophysically realistic neuron models; however, the significant computational cost associated with these models limits their utility and eventual translation to clinically relevant applications. OBJECTIVE: To develop computationally efficient estimators of the activation thresholds of multi-compartmental cortical neuron models in response to TMS-induced E-field distributions. METHODS: Multi-scale models combining anatomically accurate finite element method (FEM) simulations of the TMS E-field with layer-specific representations of cortical neurons were used to generate a large dataset of activation thresholds. 3D convolutional neural networks (CNNs) were trained on these data to predict thresholds of model neurons given their local E-field distribution. The CNN estimator was compared to an approach using the uniform E-field approximation to estimate thresholds in the non-uniform TMS-induced E-field. RESULTS: The 3D CNNs estimated thresholds with mean absolute percent error (MAPE) on the test dataset below 2.5% and strong correlation between the CNN predicted and actual thresholds for all cell types (R2 > 0.96). The CNNs estimated thresholds with a 2-4 orders of magnitude reduction in the computational cost of the multi-compartmental neuron models. The CNNs were also trained to predict the median threshold of populations of neurons, speeding up computation further. CONCLUSION: 3D CNNs can estimate rapidly and accurately the TMS activation thresholds of biophysically realistic neuron models using sparse samples of the local E-field, enabling simulating responses of large neuron populations or parameter space exploration on a personal computer.


Assuntos
Neurônios , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Neurônios/fisiologia , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Eletricidade
2.
Nat Mater ; 21(8): 951-958, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35761060

RESUMO

Precisely timed activation of genetically targeted cells is a powerful tool for the study of neural circuits and control of cell-based therapies. Magnetic control of cell activity, or 'magnetogenetics', using magnetic nanoparticle heating of temperature-sensitive ion channels enables remote, non-invasive activation of neurons for deep-tissue applications and freely behaving animal studies. However, the in vivo response time of thermal magnetogenetics is currently tens of seconds, which prevents precise temporal modulation of neural activity. Moreover, magnetogenetics has yet to achieve in vivo multiplexed stimulation of different groups of neurons. Here we produce subsecond behavioural responses in Drosophila melanogaster by combining magnetic nanoparticles with a rate-sensitive thermoreceptor (TRPA1-A). Furthermore, by tuning magnetic nanoparticles to respond to different magnetic field strengths and frequencies, we achieve subsecond, multichannel stimulation. These results bring magnetogenetics closer to the temporal resolution and multiplexed stimulation possible with optogenetics while maintaining the minimal invasiveness and deep-tissue stimulation possible only by magnetic control.


Assuntos
Drosophila melanogaster , Neurônios , Animais , Canais Iônicos , Fenômenos Magnéticos , Neurônios/fisiologia
3.
Neuroimage ; 249: 118863, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974116

RESUMO

TMS has become a powerful tool to explore cortical function, and in parallel has proven promising in the development of therapies for various psychiatric and neurological disorders. Unfortunately, much of the inference of the direct effects of TMS has been assumed to be limited to the area a few centimeters beneath the scalp, though clearly more distant regions are likely to be influenced by structurally connected stimulation sites. In this study, we sought to develop a novel paradigm to individualize TMS coil placement to non-invasively achieve activation of specific deep brain targets of relevance to the treatment of psychiatric disorders. In ten subjects, structural diffusion imaging tractography data were used to identify an accessible cortical target in the right frontal pole that demonstrated both anatomic and functional connectivity to right Brodmann area 25 (BA25). Concurrent TMS-fMRI interleaving was used with a series of single, interleaved TMS pulses applied to the right frontal pole at four intensity levels ranging from 80% to 140% of motor threshold. In nine of ten subjects, TMS to the individualized frontal pole sites resulted in significant linear increase in BOLD activation of BA25 with increasing TMS intensity. The reliable activation of BA25 in a dosage-dependent manner suggests the possibility that the careful combination of imaging with TMS can make use of network properties to help overcome depth limitations and allow noninvasive brain stimulation to influence deep brain structures.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Estimulação Encefálica Profunda , Imagem de Tensor de Difusão , Estimulação Magnética Transcraniana , Adulto , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Adulto Jovem
4.
J Neurosci ; 40(35): 6770-6778, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32690618

RESUMO

The brain is an inherently dynamic system, and much work has focused on the ability to modify neural activity through both local perturbations and changes in the function of global network ensembles. Network controllability is a recent concept in network neuroscience that purports to predict the influence of individual cortical sites on global network states and state changes, thereby creating a unifying account of local influences on global brain dynamics. While this notion is accepted in engineering science, it is subject to ongoing debates in neuroscience as empirical evidence linking network controllability to brain activity and human behavior remains scarce. Here, we present an integrated set of multimodal brain-behavior relationships derived from fMRI, diffusion tensor imaging, and online repetitive transcranial magnetic stimulation (rTMS) applied during an individually calibrated working memory task performed by individuals of both sexes. The modes describing the structural network system dynamics showed direct relationships to brain activity associated with task difficulty, with difficult-to-reach modes contributing to functional brain states in the hard task condition. Modal controllability (a measure quantifying the contribution of difficult-to-reach modes) at the stimulated site predicted both fMRI activations associated with increasing task difficulty and rTMS benefits on task performance. Furthermore, fMRI explained 64% of the variance between modal controllability and the working memory benefit associated with 5 Hz online rTMS. These results therefore provide evidence toward the functional validity of network control theory, and outline a clear technique for integrating structural network topology and functional activity to predict the influence of stimulation on subsequent behavior.SIGNIFICANCE STATEMENT The network controllability concept proposes that specific cortical nodes are able to steer the brain into certain physiological states. By applying external perturbation to these control nodes, it is theorized that brain stimulation is able to selectively target difficult-to-reach states, potentially aiding processing and improving performance on cognitive tasks. The current study used rTMS and fMRI during a working memory task to test this hypothesis. We demonstrate that network controllability correlates with fMRI modulation because of working memory load and with the behavioral improvements that result from a multivisit intervention using 5 Hz rTMS. This study demonstrates the validity of network controllability and offers a new targeting approach to improve efficacy.


Assuntos
Encéfalo/fisiologia , Conectoma , Memória de Curto Prazo , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Modelos Neurológicos , Estimulação Magnética Transcraniana
5.
Neuroimage ; 228: 117696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385544

RESUMO

BACKGROUND: During transcranial magnetic stimulation (TMS) a coil placed on the scalp is used to non-invasively modulate activity of targeted brain networks via a magnetically induced electric field (E-field). Ideally, the E-field induced during TMS is concentrated on a targeted cortical region of interest (ROI). Determination of the coil position and orientation that best achieve this objective presently requires a large computational effort. OBJECTIVE: To improve the accuracy of TMS we have developed a fast computational auxiliary dipole method (ADM) for determining the optimum coil position and orientation. The optimum coil placement maximizes the E-field along a predetermined direction or, alternatively, the overall E-field magnitude in the targeted ROI. Furthermore, ADM can assess E-field uncertainty resulting from precision limitations of TMS coil placement protocols. METHOD: ADM leverages the electromagnetic reciprocity principle to compute rapidly the TMS induced E-field in the ROI by using the E-field generated by a virtual constant current source residing in the ROI. The framework starts by solving for the conduction currents resulting from this ROI current source. Then, it rapidly determines the average E-field induced in the ROI for each coil position by using the conduction currents and a fast-multipole method. To further speed-up the computations, the coil is approximated using auxiliary dipoles enabling it to represent all coil orientations for a given coil position with less than 600 dipoles. RESULTS: Using ADM, the E-fields generated in an MRI-derived head model when the coil is placed at 5900 different scalp positions and 360 coil orientations per position (over 2.1 million unique configurations) can be determined in under 15 min on a standard laptop computer. This enables rapid extraction of the optimum coil position and orientation as well as the E-field variation resulting from coil positioning uncertainty. ADM is implemented in SimNIBS 3.2. CONCLUSION: ADM enables the rapid determination of coil placement that maximizes E-field delivery to a specific brain target. This method can find the optimum coil placement in under 15 min enabling its routine use for TMS. Furthermore, it enables the fast quantification of uncertainty in the induced E-field due to limited precision of TMS coil placement protocols, enabling minimization and statistical analysis of the E-field dose variability.


Assuntos
Simulação por Computador , Estimulação Magnética Transcraniana/métodos , Campos Eletromagnéticos , Humanos , Modelos Anatômicos
6.
Biophys J ; 115(1): 95-107, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972816

RESUMO

We present a theory and computational models to couple the electric field induced by magnetic stimulation to neuronal membranes. Based on the characteristics of magnetically induced electric fields and the modified cable equation that we developed previously, quasipotentials are derived as a simple and accurate approximation for coupling of the electric fields to neurons. The conventional and modified cable equations are used to simulate magnetic stimulation of long peripheral nerves by circular and figure-8 coils. Activation thresholds are obtained over a range of lateral and vertical coil positions for two nonlinear membrane models representing unmyelinated and myelinated straight axons and also for undulating myelinated axons. For unmyelinated straight axons, the thresholds obtained with the modified cable equation are significantly lower due to transverse polarization, and the spatial distributions of thresholds as a function of coil position differ significantly from predictions by the activating function. However, the activation thresholds of unmyelinated axons obtained with either cable equation are very high and beyond the output capabilities of conventional magnetic stimulators. For myelinated axons, threshold values are similar for both cable equations and within the range of magnetic stimulators. Whereas the transverse field contributes negligibly to the activation thresholds of myelinated fibers, axonal undulation can significantly increase or decrease thresholds depending on coil position. The analysis provides a rigorous theoretical foundation and implementation methods for the use of the cable equation to model neuronal response to magnetically induced electric fields. Experimentally observed stimulation with the electric fields perpendicular to the nerve trunk cannot be explained by transverse polarization and is likely due to nerve fiber undulation and other geometrical inhomogeneities.


Assuntos
Eletricidade , Campos Magnéticos , Neurônios/citologia , Axônios/metabolismo , Membrana Celular/metabolismo , Bainha de Mielina/metabolismo
8.
Neuromodulation ; 21(4): 340-347, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29024263

RESUMO

OBJECTIVE: The objective of this work was to characterize the magnetic field (B-field) that arises in a human brain model from the application of transcranial static magnetic field stimulation (tSMS). MATERIALS AND METHODS: The spatial distribution of the B-field magnitude and gradient of a cylindrical, 5.08 cm × 2.54 cm NdFeB magnet were simulated in air and in a human head model using the finite element method and calibrated with measurements in air. The B-field was simulated for magnet placements over prefrontal, motor, sensory, and visual cortex targets. The impact of magnetic susceptibility of head tissues on the B-field was quantified. RESULTS: Peak B-field magnitude and gradient respectively ranged from 179-245 mT and from 13.3-19.0 T/m across the cortical targets. B-field magnitude, focality, and gradient decreased with magnet-cortex distance. The variation in B-field strength and gradient across the anatomical targets largely arose from the magnet-cortex distance. Head magnetic susceptibilities had negligible impact on the B-field characteristics. The half-maximum focality of the tSMS B-field ranged from 7-12 cm3 . SIGNIFICANCE: This is the first presentation and characterization of the three-dimensional (3D) spatial distribution of the B-field generated in a human brain model by tSMS. These data can provide quantitative dosing guidance for tSMS applications across various cortical targets and subjects. The finding that the B-field gradient is high near the magnet edges should be considered in studies where neural tissue is placed close to the magnet. The observation that susceptibility has negligible effects confirms assumptions in the literature.


Assuntos
Cabeça/fisiologia , Modelos Biológicos , Estimulação Magnética Transcraniana/métodos , Fenômenos Biofísicos , Simulação por Computador , Humanos , Campos Magnéticos , Reprodutibilidade dos Testes
9.
Clin Neurophysiol ; 164: 161-167, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901111

RESUMO

OBJECTIVES: Strength-duration time constant (SDTC) may now be determined for cortical motor neurones, with activity mediated by transient Na+ conductances. The present study determined whether cortical SDTC is abnormal and linked to the pathogenesis of amyotrophic lateral sclerosis. METHODS: Cortical SDTC and rheobase were estimated from 17 ALS patients using a controllable pulse parameter transcranial magnetic stimulation (cTMS) device. Resting motor thresholds (RMTs) were determined at pulse widths (PW) of 30, 45, 60, 90 and 120 µs and M-ratio of 0.1, using a figure-of-eight coil applied to the primary motor cortex. RESULTS: SDTC was significantly reduced in ALS patients (150.58 ± 9.98 µs; controls 205.94 ± 13.7 µs, P < 0.01). The reduced SDTC correlated with a rate of disease progression (Rho = -0.440, P < 0.05), ALS functional rating score (ALSFRS-R) score (Rho = 0.446, P < 0.05), and disease duration (R = 0.428, P < 0.05). The degree of change in SDTC was greater in patients with cognitive abnormalities as manifested by an abnormal total Edinburgh Cognitive ALS Screen score (140.5 ± 28.7 µs, P < 0.001) and ALS-specific subscore (141.7 ± 33.2 µs, P = 0.003). CONCLUSIONS: Cortical SDTC reduction was associated with a more aggressive ALS phenotype, or with more prominent cognitive impairment. SIGNIFICANCE: An increase in transient Na+ conductances may account for the reduction in SDTC, linked to the pathogenesis of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Potencial Evocado Motor , Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/diagnóstico , Masculino , Feminino , Estimulação Magnética Transcraniana/métodos , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Idoso , Potencial Evocado Motor/fisiologia , Adulto , Neurônios Motores/fisiologia
10.
ArXiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38351938

RESUMO

We define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency. The application of QSA in neuro-modulation is based on four underlying assumptions: (A1) no wave propagation or self-induction in tissue, (A2) linear tissue properties, (A3) purely resistive tissue, and (A4) non-dispersive tissue. As a consequence of these assumptions, each tissue is assigned a fixed conductivity, and the simplified equations (e.g., Laplace's equation) are solved for the spatial distribution of the field, which is separated from the field's temporal waveform. Recognizing that electrical tissue properties may be more complex, we explain how QSA can be embedded in parallel or iterative pipelines to model frequency dependence or nonlinearity of conductivity. We survey the history and validity of QSA across specific applications, such as microstimulation, deep brain stimulation, spinal cord stimulation, transcranial electrical stimulation, and transcranial magnetic stimulation. The precise definition and explanation of QSA in neuromodulation are essential for rigor when using QSA models or testing their limits.

11.
J Neurosci Methods ; 408: 110176, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795980

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) is used to treat a range of brain disorders by inducing an electric field (E-field) in the brain. However, the precise neural effects of TMS are not well understood. Nonhuman primates (NHPs) are used to model the impact of TMS on neural activity, but a systematic method of quantifying the induced E-field in the cortex of NHPs has not been developed. NEW METHOD: The pipeline uses statistical parametric mapping (SPM) to automatically segment a structural MRI image of a rhesus macaque into five tissue compartments. Manual corrections are necessary around implants. The segmented tissues are tessellated into 3D meshes used in finite element method (FEM) software to compute the TMS induced E-field in the brain. The gray matter can be further segmented into cortical laminae using a volume preserving method for defining layers. RESULTS: Models of three NHPs were generated with TMS coils placed over the precentral gyrus. Two coil configurations, active and sham, were simulated and compared. The results demonstrated a large difference in E-fields at the target. Additionally, the simulations were calculated using two different E-field solvers and were found to not significantly differ. COMPARISON WITH EXISTING METHODS: Current methods segment NHP tissues manually or use automated methods for only the brain tissue. Existing methods also do not stratify the gray matter into layers. CONCLUSION: The pipeline calculates the induced E-field in NHP models by TMS and can be used to plan implant surgeries and determine approximate E-field values around neuron recording sites.


Assuntos
Análise de Elementos Finitos , Macaca mulatta , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Modelos Neurológicos , Masculino , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Substância Cinzenta/fisiologia , Substância Cinzenta/diagnóstico por imagem
12.
J Neural Eng ; 21(4)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38994790

RESUMO

We define and explain the quasistatic approximation (QSA) as applied to field modeling for electrical and magnetic stimulation. Neuromodulation analysis pipelines include discrete stages, and QSA is applied specifically when calculating the electric and magnetic fields generated in tissues by a given stimulation dose. QSA simplifies the modeling equations to support tractable analysis, enhanced understanding, and computational efficiency. The application of QSA in neuromodulation is based on four underlying assumptions: (A1) no wave propagation or self-induction in tissue, (A2) linear tissue properties, (A3) purely resistive tissue, and (A4) non-dispersive tissue. As a consequence of these assumptions, each tissue is assigned a fixed conductivity, and the simplified equations (e.g. Laplace's equation) are solved for the spatial distribution of the field, which is separated from the field's temporal waveform. Recognizing that electrical tissue properties may be more complex, we explain how QSA can be embedded in parallel or iterative pipelines to model frequency dependence or nonlinearity of conductivity. We survey the history and validity of QSA across specific applications, such as microstimulation, deep brain stimulation, spinal cord stimulation, transcranial electrical stimulation, and transcranial magnetic stimulation. The precise definition and explanation of QSA in neuromodulation are essential for rigor when using QSA models or testing their limits.


Assuntos
Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Modelos Neurológicos , Estimulação Encefálica Profunda/métodos , Estimulação Elétrica/métodos , Animais , Simulação por Computador
13.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005397

RESUMO

BACKGROUND: Electromagnetic forces in transcranial magnetic stimulation (TMS) coils generate a loud clicking sound that produces confounding auditory activation and is potentially hazardous to hearing. To reduce this noise while maintaining stimulation efficiency similar to conventional TMS coils, we previously developed a quiet TMS double containment coil (qTMS-DCC). OBJECTIVE: To compare the stimulation strength, perceived loudness, and EEG response between qTMS-DCC and a commercial TMS coil. METHODS: Nine healthy volunteers participated in a within-subject study design. The resting motor thresholds (RMTs) for qTMS-DCC and MagVenture Cool-B65 were measured. Psychoacoustic titration matched the Cool-B65 loudness to qTMS-DCC pulsed at 80, 100, and 120% RMT. Event-related potentials (ERPs) were recorded for both coils. The psychoacoustic titration and ERPs were acquired with the coils both on and 6 cm off the scalp, the latter isolating the effects of airborne auditory stimulation from body sound and electromagnetic stimulation. The ERP comparisons focused on a centro-frontal region that encompassed peak responses in the global signal. RESULTS: RMT did not differ significantly between the coils, with or without the EEG cap on the head. qTMS-DCC was perceived to be substantially quieter than Cool-B65. For example, qTMS-DCC at 100% coil-specific RMT sounded like Cool-B65 at 34% RMT. The general ERP waveform and topography were similar between the two coils, as were early-latency components, indicating comparable electromagnetic brain stimulation in the on-scalp condition. qTMS-DCC had a significantly smaller P180 component in both on-scalp and off-scalp conditions, supporting reduced auditory activation. CONCLUSIONS: The stimulation efficiency of qTMS-DCC matched Cool-B65, while having substantially lower perceived loudness and auditory-evoked potentials. Highlights: qTMS coil is subjectively and objectively quieter than conventional Cool-B65 coilqTMS coil at 100% motor threshold was as loud as Cool-B65 at 34% motor thresholdAttenuated coil noise reduced auditory N100 and P180 evoked response componentsqTMS coil enables reduction of auditory activation without masking.

14.
Front Hum Neurosci ; 18: 1310320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384332

RESUMO

Measurement of the input-output (IO) curves of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) can be used to assess corticospinal excitability and motor recruitment. While IO curves have been used to study disease and pharmacology, few studies have compared the IO curves across the body. This study sought to characterize IO curve parameters across the dominant and non-dominant sides of upper and lower limbs in healthy participants. Laterality preferences were assessed in eight healthy participants and IO curves were measured bilaterally for the first dorsal interosseous (FDI), biceps brachii (BB), and tibialis anterior (TA) muscles. Results show that FDI has lower motor threshold than BB which is, in turn, lower than TA. In addition, both BB and TA have markedly shallower logarithmic IO curve slopes from small to large MEP responses than FDI. After normalizing these slopes by their midpoints to account for differences in motor thresholds, which could result from geometric factors such as the target depth, large differences in logarithmic slopes remain present between all three muscles. The differences in slopes between the muscles could not be explained by differences in normalized IO curve spreads, which relate to the extent of the cortical representation and were comparable across the muscles. The IO curve differences therefore suggest muscle-dependent variations in TMS-evoked recruitment across the primary motor cortex, which should be considered when utilizing TMS-evoked MEPs to study disease states and treatment effects.

15.
Comput Biol Med ; 178: 108689, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875907

RESUMO

Registering the head and estimating the scalp surface are important for various biomedical procedures, including those using neuronavigation to localize brain stimulation or recording. However, neuronavigation systems rely on manually-identified fiducial head targets and often require a patient-specific MRI for accurate registration, limiting adoption. We propose a practical technique capable of inferring the scalp shape and use it to accurately register the subject's head. Our method does not require anatomical landmark annotation or an individual MRI scan, yet achieves accurate registration of the subject's head and estimation of its surface. The scalp shape is estimated from surface samples easily acquired using existing pointer tools, and registration exploits statistical head model priors. Our method allows for the acquisition of non-trivial shapes from a limited number of data points while leveraging their object class priors, surpassing the accuracy of common reconstruction and registration methods using the same tools. The proposed approach is evaluated in a virtual study with head MRI data from 1152 subjects, achieving an average reconstruction root-mean-square error of 2.95 mm, which outperforms a common neuronavigation technique by 2.70 mm. We also characterize the error under different conditions and provide guidelines for efficient sampling. Furthermore, we demonstrate and validate the proposed method on data from 50 subjects collected with conventional neuronavigation tools and setup, obtaining an average root-mean-square error of 2.89 mm; adding landmark-based registration improves this error to 2.63 mm. The simulation and experimental results support the proposed method's effectiveness with or without landmark annotation, highlighting its broad applicability.


Assuntos
Modelos Anatômicos , Modelos Estatísticos , Couro Cabeludo , Couro Cabeludo/anatomia & histologia , Neuronavegação , Pontos de Referência Anatômicos , Tecnologia Biomédica , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Humanos , Masculino , Feminino
16.
Neuropsychopharmacology ; 49(4): 640-648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212442

RESUMO

Electroconvulsive therapy (ECT) pulse amplitude, which dictates the induced electric field (E-field) magnitude in the brain, is presently fixed at 800 or 900 milliamperes (mA) without clinical or scientific rationale. We have previously demonstrated that increased E-field strength improves ECT's antidepressant effect but worsens cognitive outcomes. Amplitude-determined seizure titration may reduce the E-field variability relative to fixed amplitude ECT. In this investigation, we assessed the relationships among amplitude-determined seizure-threshold (STa), E-field magnitude, and clinical outcomes in older adults (age range 50 to 80 years) with depression. Subjects received brain imaging, depression assessment, and neuropsychological assessment pre-, mid-, and post-ECT. STa was determined during the first treatment with a Soterix Medical 4×1 High Definition ECT Multi-channel Stimulation Interface (Investigation Device Exemption: G200123). Subsequent treatments were completed with right unilateral electrode placement (RUL) and 800 mA. We calculated Ebrain defined as the 90th percentile of E-field magnitude in the whole brain for RUL electrode placement. Twenty-nine subjects were included in the final analyses. Ebrain per unit electrode current, Ebrain/I, was associated with STa. STa was associated with antidepressant outcomes at the mid-ECT assessment and bitemporal electrode placement switch. Ebrain/I was associated with changes in category fluency with a large effect size. The relationship between STa and Ebrain/I extends work from preclinical models and provides a validation step for ECT E-field modeling. ECT with individualized amplitude based on E-field modeling or STa has the potential to enhance neuroscience-based ECT parameter selection and improve clinical outcomes.


Assuntos
Eletroconvulsoterapia , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Eletroconvulsoterapia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Convulsões/terapia , Antidepressivos/uso terapêutico , Cognição , Resultado do Tratamento
17.
J ECT ; 29(4): 325-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24263276

RESUMO

OBJECTIVES: Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. METHODS: Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. RESULTS: By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. CONCLUSIONS: The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.


Assuntos
Eletroconvulsoterapia/métodos , Análise de Elementos Finitos , Modelos Anatômicos , Modelos Neurológicos , Estimulação Magnética Transcraniana/métodos , Encéfalo , Eletroconvulsoterapia/instrumentação , Eletrodos , Campos Eletromagnéticos , Cabeça , Humanos , Estimulação Magnética Transcraniana/instrumentação
18.
J Neural Eng ; 20(5)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37595573

RESUMO

Objective. Thresholding of neural responses is central to many applications of transcranial magnetic stimulation (TMS), but the stochastic aspect of neuronal activity and motor evoked potentials (MEPs) challenges thresholding techniques. We analyzed existing methods for obtaining TMS motor threshold and their variations, introduced new methods from other fields, and compared their accuracy and speed.Approach. In addition to existing relative-frequency methods, such as the five-out-of-ten method, we examined adaptive methods based on a probabilistic motor threshold model using maximum-likelihood (ML) or maximuma-posteriori(MAP) estimation. To improve the performance of these adaptive estimation methods, we explored variations in the estimation procedure and inclusion of population-level prior information. We adapted a Bayesian estimation method which iteratively incorporated information of the TMS responses into the probability density function. A family of non-parametric stochastic root-finding methods with different convergence criteria and stepping rules were explored as well. The performance of the thresholding methods was evaluated with an independent stochastic MEP model.Main Results. The conventional relative-frequency methods required a large number of stimuli, were inherently biased on the population level, and had wide error distributions for individual subjects. The parametric estimation methods obtained the thresholds much faster and their accuracy depended on the estimation method, with performance significantly improved when population-level prior information was included. Stochastic root-finding methods were comparable to adaptive estimation methods but were much simpler to implement and did not rely on a potentially inaccurate underlying estimation model.Significance. Two-parameter MAP estimation, Bayesian estimation, and stochastic root-finding methods have better error convergence compared to conventional single-parameter ML estimation, and all these methods require significantly fewer TMS pulses for accurate estimation than conventional relative-frequency methods. Stochastic root-finding appears particularly attractive due to the low computational requirements, simplicity of the algorithmic implementation, and independence from potential model flaws in the parametric estimators.


Assuntos
Potencial Evocado Motor , Estimulação Magnética Transcraniana , Humanos , Teorema de Bayes , Frequência Cardíaca , Funções Verossimilhança
19.
Harv Rev Psychiatry ; 31(3): 101-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37171471

RESUMO

LEARNING OBJECTIVES: • Outline and discuss the fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes• Summarize the overview of ECT, its efficacy in treating depression, the known effects on cognition, evidence of mechanisms, and future directions. ABSTRACT: Electroconvulsive therapy (ECT) is the most effective treatment for a variety of psychiatric illnesses, including treatment-resistant depression, bipolar depression, mania, catatonia, and clozapine-resistant schizophrenia. ECT is a medical and psychiatric procedure whereby electrical current is delivered to the brain under general anesthesia to induce a generalized seizure. ECT has evolved a great deal since the 1930s. Though it has been optimized for safety and to reduce adverse effects on cognition, issues persist. There is a need to understand fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes. Clinical trials that set out to adjust parameters, electrode placement, adjunctive medications, and patient selection are critical steps towards the goal of improving outcomes with ECT. This narrative review provides an overview of ECT, its efficacy in treating depression, its known effects on cognition, evidence of its mechanisms, and future directions.


Assuntos
Transtorno Bipolar , Catatonia , Eletroconvulsoterapia , Esquizofrenia , Humanos , Transtorno Bipolar/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Catatonia/terapia , Resultado do Tratamento
20.
J Neural Eng ; 19(6)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594634

RESUMO

Objective.Temporal interference stimulation (TIS) was proposed as a non-invasive, focal, and steerable deep brain stimulation method. However, the mechanisms underlying experimentally-observed suprathreshold TIS effects are unknown, and prior simulation studies had limitations in the representations of the TIS electric field (E-field) and cerebral neurons. We examined the E-field and neural response characteristics for TIS and related transcranial alternating current stimulation modalities.Approach.Using the uniform-field approximation, we simulated a range of stimulation parameters in biophysically realistic model cortical neurons, including different orientations, frequencies, amplitude ratios, amplitude modulation, and phase difference of the E-fields, and obtained thresholds for both activation and conduction block.Main results. For two E-fields with similar amplitudes (representative of E-field distributions at the target region), TIS generated an amplitude-modulated (AM) total E-field. Due to the phase difference of the individual E-fields, the total TIS E-field vector also exhibited rotation where the orientations of the two E-fields were not aligned (generally also at the target region). TIS activation thresholds (75-230 V m-1) were similar to those of high-frequency stimulation with or without modulation and/or rotation. For E-field dominated by the high-frequency carrier and with minimal amplitude modulation and/or rotation (typically outside the target region), TIS was less effective at activation and more effective at block. Unlike AM high-frequency stimulation, TIS generated conduction block with some orientations and amplitude ratios of individual E-fields at very high amplitudes of the total E-field (>1700 V m-1).Significance. The complex 3D properties of the TIS E-fields should be accounted for in computational and experimental studies. The mechanisms of suprathreshold cortical TIS appear to involve neural activity block and periodic activation or onset response, consistent with computational studies of peripheral axons. These phenomena occur at E-field strengths too high to be delivered tolerably through scalp electrodes and may inhibit endogenous activity in off-target regions, suggesting limited significance of suprathreshold TIS.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Estimulação Transcraniana por Corrente Contínua/métodos , Neurônios/fisiologia , Axônios , Simulação por Computador , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA