Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 22(8): 1039-1046, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500957

RESUMO

Hydrogels are attractive materials for tissue engineering, but efforts to date have shown limited ability to produce the microstructural features necessary to promote cellular self-organization into hierarchical three-dimensional (3D) organ models. Here we develop a hydrogel ink containing prefabricated gelatin fibres to print 3D organ-level scaffolds that recapitulate the intra- and intercellular organization of the heart. The addition of prefabricated gelatin fibres to hydrogels enables the tailoring of the ink rheology, allowing for a controlled sol-gel transition to achieve precise printing of free-standing 3D structures without additional supporting materials. Shear-induced alignment of fibres during ink extrusion provides microscale geometric cues that promote the self-organization of cultured human cardiomyocytes into anisotropic muscular tissues in vitro. The resulting 3D-printed ventricle in vitro model exhibited biomimetic anisotropic electrophysiological and contractile properties.


Assuntos
Gelatina , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Gelatina/química , Miócitos Cardíacos , Engenharia Tecidual/métodos , Hidrogéis/química , Impressão Tridimensional
2.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915630

RESUMO

Electrolytes are essential parts of the environment for all life forms, where proteins, water, and solutes interplay to support vital activities. However, a fundamental understanding of the effect of ionic solutes on proteins remains elusive for more than a century. Here we show how some ionic solutes can serve as potent denaturants despite the absence of direct protein-ion interactions. We demonstrate dramatic differences between denaturation potency of different ionic solutes with lithium bromide (LiBr) being the strongest denaturant and sodium bromide (NaBr) being the least potent. Experiments and simulations indicate the presence of certain ions disrupts the structure of water network, thereby induce protein denaturation indirectly via an entropy-driven mechanism. We further introduce a scalable strategy for protein waste revalorization, distinguished by the closed-loop recycling of denaturants, straightforward protein separation, and facile manufacturing, all enabled by the entropy-driven denaturation by LiBr. Through successful isolation and systematic study of indirect solute effects, our findings suggest a unified and generally applicable framework for decoding of the protein-water-solute nexus, where all current studies can be easily incorporated. Besides, our regeneration approach underscores the feasibility of repurposing protein waste into valuable biomaterials in a sustainable way with wide-reaching application potential.

3.
APL Bioeng ; 7(4): 046114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046543

RESUMO

In tissues and organs, the extracellular matrix (ECM) helps maintain inter- and intracellular architectures that sustain the structure-function relationships defining physiological homeostasis. Combining fiber scaffolds and cells to form engineered tissues is a means of replicating these relationships. Engineered tissues' fiber scaffolds are designed to mimic the topology and chemical composition of the ECM network. Here, we asked how cells found in the heart compare in their propensity to align their cytoskeleton and self-organize in response to topological cues in fibrous scaffolds. We studied cardiomyocytes, valvular interstitial cells, and vascular endothelial cells as they adapted their inter- and intracellular architectures to the extracellular space. We used focused rotary jet spinning to manufacture aligned fibrous scaffolds to mimic the length scale and three-dimensional (3D) nature of the native ECM in the muscular, valvular, and vascular tissues of the heart. The representative cardiovascular cell types were seeded onto fiber scaffolds and infiltrated the fibrous network. We measured different cell types' propensity for cytoskeletal alignment in response to fiber scaffolds with differing levels of anisotropy. The results indicated that valvular interstitial cells on moderately anisotropic substrates have a higher propensity for cytoskeletal alignment than cardiomyocytes and vascular endothelial cells. However, all cell types displayed similar levels of alignment on more extreme (isotropic and highly anisotropic) fiber scaffold organizations. These data suggest that in the hierarchy of signals that dictate the spatiotemporal organization of a tissue, geometric cues within the ECM and cellular networks may homogenize behaviors across cell populations and demographics.

4.
Nat Food ; 3(6): 428-436, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118042

RESUMO

Food waste and food safety motivate the need for improved food packaging solutions. However, current films/coatings addressing these issues are often limited by inefficient release dynamics that require large quantities of active ingredients. Here we developed antimicrobial pullulan fibre (APF)-based packaging that is biodegradable and capable of wrapping food substrates, increasing their longevity and enhancing their safety. APFs were spun using a high-throughput system, termed focused rotary jet spinning, with water as the only solvent, allowing the incorporation of naturally derived antimicrobial agents. Using avocados as a representative example, we demonstrate that APF-coated samples had their shelf life extended by inhibited proliferation of natural microflora, and lost less weight than uncoated control samples. This work offers a promising technique to produce scalable, low-cost and environmentally friendly biodegradable antimicrobial packaging systems.

5.
Science ; 377(6602): 180-185, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857545

RESUMO

Helical alignments within the heart's musculature have been speculated to be important in achieving physiological pumping efficiencies. Testing this possibility is difficult, however, because it is challenging to reproduce the fine spatial features and complex structures of the heart's musculature using current techniques. Here we report focused rotary jet spinning (FRJS), an additive manufacturing approach that enables rapid fabrication of micro/nanofiber scaffolds with programmable alignments in three-dimensional geometries. Seeding these scaffolds with cardiomyocytes enabled the biofabrication of tissue-engineered ventricles, with helically aligned models displaying more uniform deformations, greater apical shortening, and increased ejection fractions compared with circumferential alignments. The ability of FRJS to control fiber arrangements in three dimensions offers a streamlined approach to fabricating tissues and organs, with this work demonstrating how helical architectures contribute to cardiac performance.


Assuntos
Ventrículos do Coração , Nanofibras , Desenho de Prótese , Engenharia Tecidual , Animais , Humanos , Miócitos Cardíacos , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais
6.
Exp Biol Med (Maywood) ; 245(13): 1163-1174, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640894

RESUMO

IMPACT STATEMENT: Extracellular matrix in the womb regulates the initiation, progression, and completion of a healthy pregnancy. The composition and physical properties of extracellular matrix in the uterus and at the maternal-fetal interface are remodeled at each gestational stage, while maladaptive matrix remodeling results in obstetric disease. As in vitro models of uterine and placental tissues, including micro-and milli-scale versions of these organs on chips, are developed to overcome the inherent limitations of studying human development in vivo, we can isolate the influence of cellular and extracellular components in healthy and pathological pregnancies. By understanding and recreating key aspects of the extracellular microenvironment at the maternal-fetal interface, we can engineer microphysiological systems to improve assisted reproduction, obstetric disease treatment, and prenatal drug safety.


Assuntos
Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Reprodução/fisiologia , Animais , Feminino , Fertilidade/fisiologia , Humanos , Placenta/patologia , Placenta/fisiologia , Gravidez , Medicina Reprodutiva/métodos
7.
NPJ Sci Food ; 3: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646181

RESUMO

Bioprocessing applications that derive meat products from animal cell cultures require food-safe culture substrates that support volumetric expansion and maturation of adherent muscle cells. Here we demonstrate scalable production of microfibrous gelatin that supports cultured adherent muscle cells derived from cow and rabbit. As gelatin is a natural component of meat, resulting from collagen denaturation during processing and cooking, our extruded gelatin microfibers recapitulated structural and biochemical features of natural muscle tissues. Using immersion rotary jet spinning, a dry-jet wet-spinning process, we produced gelatin fibers at high rates (~ 100 g/h, dry weight) and, depending on process conditions, we tuned fiber diameters between ~ 1.3 ± 0.1 µm (mean ± SEM) and 8.7 ± 1.4 µm (mean ± SEM), which are comparable to natural collagen fibers. To inhibit fiber degradation during cell culture, we crosslinked them either chemically or by co-spinning gelatin with a microbial crosslinking enzyme. To produce meat analogs, we cultured bovine aortic smooth muscle cells and rabbit skeletal muscle myoblasts in gelatin fiber scaffolds, then used immunohistochemical staining to verify that both cell types attached to gelatin fibers and proliferated in scaffold volumes. Short-length gelatin fibers promoted cell aggregation, whereas long fibers promoted aligned muscle tissue formation. Histology, scanning electron microscopy, and mechanical testing demonstrated that cultured muscle lacked the mature contractile architecture observed in natural muscle but recapitulated some of the structural and mechanical features measured in meat products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA