Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chembiochem ; 17(1): 46-51, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26534882

RESUMO

The aggregation of protein-based therapeutics such as monoclonal antibodies (mAbs) can affect the efficacy of the treatment and can even induce effects that are adverse to the patient. Protein engineering is used to shift the mAb away from an aggregation-prone state by increasing the thermodynamic stability of the native fold, which might in turn alter conformational flexibility. We have probed the thermal stability of three types of intact IgG molecules and two Fc-hinge fragments by using variable-temperature ion-mobility mass spectrometry (VT-IM-MS). We observed changes in the conformations of isolated proteins as a function of temperature (300-550 K). The observed differences in thermal stability between IgG subclasses can be rationalized in terms of changes to higher-order structural organization mitigated by the hinge region. VT-IM-MS provides insights into mAbs structural thermodynamics and is presented as a promising tool for thermal-stability studies for proteins of therapeutic interest.


Assuntos
Anticorpos Monoclonais/química , Temperatura , Fragmentos de Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas , Conformação Proteica , Estabilidade Proteica
2.
J Biol Chem ; 287(29): 24525-33, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22610095

RESUMO

The integrity of antibody structure, stability, and biophysical characterization are becoming increasingly important as antibodies receive increasing scrutiny from regulatory authorities. We altered the disulfide bond arrangement of an IgG4 molecule by mutation of the Cys at the N terminus of the heavy chain constant domain 1 (C(H)1) (Kabat position 127) to a Ser and introduction of a Cys at a variety of positions (positions 227-230) at the C terminus of C(H)1. An inter-LC-C(H)1 disulfide bond is thus formed, which mimics the disulfide bond arrangement found in an IgG1 molecule. The antibody species present in the supernatant following transient expression in Chinese hamster ovary cells were analyzed by immunoblot to investigate product homogeneity, and purified product was analyzed by a thermofluor assay to determine thermal stability. We show that the light chain can form an inter-LC-C(H)1 disulfide bond with a Cys when present at several positions on the upper hinge (positions 227-230) and that such engineered disulfide bonds can consequently increase the Fab domain thermal stability between 3 and 6.8 °C. The IgG4 disulfide mutants displaying the greatest increase in Fab thermal stability were also the most homogeneous in terms of disulfide bond arrangement and antibody species present. Importantly, mutations did not affect the affinity for antigen of the resultant molecules. In combination with the previously described S241P mutation, we present an IgG4 molecule with increased Fab thermal stability and reduced product heterogeneity that potentially offers advantages for the production of IgG4 molecules.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cricetinae , Dissulfetos , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Imunoglobulina G/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Engenharia de Proteínas , Estabilidade Proteica , Homologia de Sequência de Aminoácidos
3.
Commun Biol ; 4(1): 1031, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475514

RESUMO

The majority of depleting monoclonal antibody (mAb) drugs elicit responses via Fc-FcγR and Fc-C1q interactions. Optimal C1q interaction is achieved through hexameric Fc:Fc interactions at the target cell surface. Herein is described an approach to exploit the tailpiece of the naturally multimeric IgM to augment hexamerisation of IgG. Fusion of the C-terminal tailpiece of IgM promoted spontaneous hIgG hexamer formation, resulting in enhanced C1q recruitment and complement-dependent cytotoxicity (CDC) but with off-target complement activation and reduced in-vivo efficacy. Mutation of the penultimate tailpiece cysteine to serine (C575S) ablated spontaneous hexamer formation, but facilitated reversible hexamer formation after concentration in solution. C575S mutant tailpiece antibodies displayed increased complement activity only after target binding, in-line with the concept of 'on-target hexamerisation', whilst retaining efficient in-vivo efficacy and augmented target cell killing in the lymph node. Hence, C575S-tailpiece technology represents an alternative format for promoting on-target hexamerisation and enhanced CDC.


Assuntos
Ativação do Complemento , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Humanos , Mutação
4.
MAbs ; 13(1): 1859049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33487120

RESUMO

Bispecific antibodies can uniquely influence cellular responses, but selecting target combinations for optimal functional activity remains challenging. Here we describe a high-throughput, combinatorial, phenotypic screening approach using a new bispecific antibody target discovery format, allowing screening of hundreds of target combinations. Simple in vitro mixing of Fab-fusion proteins from a diverse library enables the generation of thousands of screen-ready bispecific antibodies for high-throughput, biologically relevant assays. We identified an obligate bispecific co-targeting CD79a/b and CD22 as a potent inhibitor of human B cell activation from a short-term flow cytometry signaling assay. A long-term, high-content imaging assay identified anti-integrin bispecific inhibitors of human cell matrix accumulation targeting integrins ß1 and ß6 or αV and ß1. In all cases, functional activity was conserved from the bispecific screening format to a therapeutically relevant format. We also introduce a broader type of mechanistic screen whereby functional modulation of different cell subsets in peripheral blood mononuclear cells was evaluated simultaneously. We identified bispecific antibodies capable of activating different T cell subsets of potential interest for applications in oncology or infectious disease, as well as bispecifics abrogating T cell activity of potential interest to autoimmune or inflammatory disease. The bispecific target pair discovery technology described herein offers access to new target biology and unique bispecific therapeutic opportunities in diverse disease indications.


Assuntos
Anticorpos Biespecíficos/imunologia , Antígenos CD79/imunologia , Ensaios de Triagem em Larga Escala/métodos , Fragmentos Fab das Imunoglobulinas/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Biespecíficos/isolamento & purificação , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Citocinas/imunologia , Citocinas/metabolismo , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Commun Biol ; 1: 146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272022

RESUMO

Autoantibody-mediated diseases are currently treated with intravenous immunoglobulin, which is thought to act in part via blockade of Fc gamma receptors, thereby inhibiting autoantibody effector functions and subsequent pathology. We aimed to develop recombinant molecules with enhanced Fc receptor avidity and thus increased potency over intravenous immunoglobulin. Here we describe the molecular engineering of human Fc hexamers and explore their therapeutic and safety profiles. We show Fc hexamers were more potent than IVIG in phagocytosis blockade and disease models. However, in human whole-blood safety assays incubation with IgG1 isotype Fc hexamers resulted in cytokine release, platelet and complement activation, whereas the IgG4 version did not. We used a statistically designed mutagenesis approach to identify the key Fc residues involved in these processes. Cytokine release was found to be dependent on neutrophil FcγRIIIb interactions with L234 and A327 in the Fc. Therefore, Fc hexamers provide unique insights into Fc receptor biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA