Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Plant Dis ; 108(2): 398-406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37622276

RESUMO

Onion thrips, Thrips tabaci (Lindeman), transmits iris yellow spot virus (IYSV) and is one of the most important pests of Allium crops. IYSV is a member of the species Tospovirus iridimaculaflavi in the genus Orthotospovirus of the family Tospoviridae. This virus typically reduces overall onion bulb quality and weight but can also prematurely kill onion plants. IYSV is neither seed nor mechanically transmitted. Onion fields are typically established via seeds and transplants. A decade ago, onion thrips tended to colonize transplanted fields before seeded fields because plants in transplanted fields were larger and more attractive to thrips than smaller onions in seeded fields. Therefore, we hypothesized that the incidence of IYSV in transplanted fields would be detected early in the season and be spatially aggregated, whereas IYSV would be absent from seeded fields early in the season and initial epidemic patterns would be spatially random. In 2021 and 2022, IYSV incidence and onion thrips populations were quantified in 12 onion fields (four transplanted fields and eight seeded fields) in New York. Fields were scouted four times throughout the growing season (n = 96 samples), and a geospatial and temporal analysis of aggregation and incidence was conducted to determine spatiotemporal patterns in each field type. Results indicated that spatial patterns of IYSV incidence and onion thrips populations were similar early in the season, indicating that transplanted onion fields are no longer the dominant early-season source of IYSV in New York. These findings suggest the need to identify other important early-season sources of IYSV that impact New York onion fields.


Assuntos
Tisanópteros , Tospovirus , Animais , Cebolas , New York , Doenças das Plantas , Sementes
2.
Plant Dis ; 108(6): 1750-1754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38213120

RESUMO

Iris yellow spot virus (IYSV) poses a significant threat to dry bulb onion, Allium cepa L., production and can lead to substantial yield reductions. IYSV is transmitted by onion thrips, Thrips tabaci (Lindeman), but not via seed. Transplanted onion fields have been major early season sources of IYSV epidemics. As onion thrips tend to disperse short distances, seeded onion fields bordering transplanted onion fields may be at greater risk of IYSV infection than seeded fields isolated from transplanted ones. Additionally, seeded onion fields planted early may be at greater risk of IYSV infection than those seeded later. In a 2-year study in New York, we compared IYSV incidence and onion thrips populations in seeded onion fields relative to their proximity to transplanted onion fields. In a second study, we compared IYSV incidence in onion fields with either small or large plants during midseason. Results showed similar IYSV incidence and onion thrips populations in seeded onion fields regardless of their proximity to transplanted onion fields, while IYSV incidence was over four times greater in large onion plants than in small ones during midseason. These findings suggest a greater risk of onion thrips-mediated IYSV infection in onion fields with large plants compared with small ones during midseason and that proximity of seeded fields to transplanted ones is a poor indicator of IYSV risk. Our findings on IYSV spread dynamics provided valuable insights for developing integrated pest and disease management strategies for New York onion growers.


Assuntos
Cebolas , Doenças das Plantas , Tisanópteros , Cebolas/virologia , Doenças das Plantas/virologia , New York , Animais , Tisanópteros/virologia , Tisanópteros/fisiologia , Insetos Vetores/virologia
3.
Plant Dis ; 108(8): 2518-2529, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38549272

RESUMO

Cercospora leaf spot (CLS), caused by the hemibiotrophic fungus Cercospora beticola, is a destructive disease affecting table beet. Multiple applications of fungicides are needed to reduce epidemic progress to maintain foliar health and enable mechanized harvest. The sustainability of CLS control is threatened by the rapid development of fungicide resistance, the need to grow commercially acceptable yet CLS-susceptible cultivars, and the inability to manipulate agronomic conditions to mitigate disease risk. Nighttime applications of germicidal UV light (UV-C) have recently been used to suppress several plant diseases, notably those caused by ectoparasitic biotrophs such as powdery mildews. We evaluated the efficacy of nighttime applications of UV-C for suppression of CLS in table beet. In vitro lethality of UV-C to germinating conidia increased with increasing dose, with complete suppression at 1,000 J/m2. Greenhouse-grown table beet tolerated relatively high doses of UV-C without lethal effects despite some bronzing on the leaf blade. A UV-C dose >1,500 J/m2 resulted in phytotoxicity severities greater than 50%. UV-C exposure to ≤750 J/m2 resulted in negligible phytotoxicity. Older (6-week-old) greenhouse-grown plants were more susceptible to UV-C damage than younger (2- and 4-week-old) plants. Suppression of CLS by UV-C was greater when applied within 6 days of C. beticola inoculation than if delayed until 13 days after infection in greenhouse-grown plants. In field trials, there were significant linear relationships between UV-C dose and CLS control and phytotoxicity severity, and a significant negative linear relationship between phytotoxicity and CLS severity at the final assessment. Significant differences between UV-C doses on the severity of CLS and phytotoxicity indicated an efficacious dose near 800 J/m2. Collectively, these findings illustrate significant and substantial suppression by nighttime applications of UV-C for CLS control on table beet, with potential for incorporation in both conventional and organic table beet broadacre production systems.


Assuntos
Beta vulgaris , Cercospora , Doenças das Plantas , Raios Ultravioleta , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Beta vulgaris/microbiologia , Beta vulgaris/efeitos da radiação , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação
4.
Plant Dis ; 107(12): 3886-3895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37330630

RESUMO

Stemphylium leaf blight (SLB), caused by the fungus Stemphylium vesicarium, is dominant within the foliar disease complex affecting onion production in New York (NY). The disease causes premature defoliation and significant reductions in bulb weight and quality. Foliar diseases of onion are usually managed by an intensive fungicide program, but SLB management is complicated by resistance to multiple single-site modes of action. The design of integrated disease management strategies is limited by incomplete knowledge surrounding the dominant sources of S. vesicarium inoculum. To facilitate genomic-based studies of S. vesicarium populations, nine microsatellite markers were developed. The markers were multiplexed into two PCR assays containing four and five fluorescently labeled microsatellite markers. Initial testing of the S. vesicarium isolates found the markers were highly polymorphic and reproducible with an average of 8.2 alleles per locus. The markers were used to characterize 54 S. vesicarium isolates from major NY onion production regions in 2016 (n = 27) and 2018 (n = 27). Fifty-two multilocus genotypes (MLGs) were identified between these populations. Genotypic and allelic diversities were high in both the 2016 and 2018 populations. A greater degree of genetic variation was observed within populations than between years. No distinct pattern of MLGs according to population was identified and some MLGs were closely related between 2016 and 2018. The lack of evidence for linkage among loci also was strongly suggestive of clonal populations with only minor differences between the two populations. These microsatellite markers will be a foundational resource for the testing of hypotheses surrounding the population biology of S. vesicarium and therefore informing disease management.


Assuntos
Ascomicetos , Cebolas , Cebolas/genética , Cebolas/microbiologia , Ascomicetos/genética , Repetições de Microssatélites/genética , New York
5.
Plant Dis ; 107(6): 1714-1720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36428257

RESUMO

Regular scouting for plant diseases and insect pests by growers, crop consultants, extension educators, and researchers (herein defined as stakeholders) is the cornerstone of integrated pest management practices. Sequential sampling plans have the potential to save time and labor in field scouting and reduce the frequency of errors surrounding decision-making. The incorporation of the algorithms behind sequential sampling plans into mobile devices can make scouting for diseases and insect pests more straightforward, practical, and enjoyable. Here, we introduce an iOS application called Sampling. The application was designed for stakeholders to use on a mobile device for assessing disease and insect pest incidence in the field using sequential sampling plans. The application allows users to select a disease or insect pest from a prepopulated list and specify the objective of sampling: Estimation or classification. Conducting sequential sampling depends upon different precision levels and action thresholds within each objective. Detailed instructions for each sequential sampling plan are available as a guide. When sampling begins, users enter the number of diseased individuals at each sampling unit. The specific algorithm developed for the disease or insect pest will inform the user when to stop sampling for the desired goal and return the final incidence and precision or threshold achieved. Results are automatically saved in the application, and the user can inspect and share results by exporting them to a range of compatible programs. The initial version of Sampling (1.1) was released with the sequential sampling plans for Cercospora leaf spot of table beet. Sequential sampling plans for additional diseases or pests will be added to Sampling in subsequent versions. Sampling is available as a free download from the Apple Store (https://apple.co/3pUiYKy) and is compatible with iOS 14.0 or greater on the iPhone or iPad.


Assuntos
Controle de Insetos , Malus , Animais , Controle de Insetos/métodos , Insetos , Doenças das Plantas/prevenção & controle , Algoritmos
6.
Plant Dis ; 106(2): 360-363, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34524868

RESUMO

The infection of the floral tissues of snap bean and other crops by Sclerotinia sclerotiorum, the causative agent of white mold, is by ascospores. Irrespective of the fungicide mode of action being evaluated, in vitro fungicide sensitivity tests are conducted almost exclusively using mycelial growth assays. This is likely because of difficulties and time involved in sclerotial conditioning required to produce apothecia and ascospores. The objective of this research was to compare estimates of fungicide sensitivity between mycelial growth and ascospore germination assays for S. sclerotiorum. Sensitivity assays were conducted using serial doses of three fungicides commonly used to control white mold: boscalid, fluazinam, and thiophanate-methyl. A total of 27 isolates were evaluated in replicated trials conducted for each fungicide and assay type. The effective concentration to reduce mycelial growth or ascospore germination by 50% (EC50) was estimated for each isolate, fungicide, and assay type. The median EC50 values obtained from ascospore germination assays were 52.7, 10.0, and 2.7 times higher than those estimated from the mycelial growth for boscalid, fluazinam, and thiophanate-methyl, respectively. No significant correlation was found between EC50 values estimated by the two methods. These findings highlight differences that may be important in evaluating the sensitivity of S. sclerotiorum given the fungicide mode of action and how they will be used in the field.


Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Germinação , Micélio
7.
Plant Dis ; 106(5): 1381-1391, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34798786

RESUMO

Stemphylium leaf blight (SLB) caused by Stemphylium vesicarium is the dominant foliar disease affecting large-scale onion production in New York. The disease is managed by fungicides, but control failures are prevalent and are attributed to fungicide resistance. Little is known of the relative role of inoculum sources in initiation and spread of SLB epidemics. Plate testing of 28 commercially available organic onion seedlots from 2016 and 2017 did not detect S. vesicarium. This finding suggests that although S. vesicarium has been reported as seed-transmitted, this is unlikely to be a significant inoculum source in commercially available organic seed lots and even less so in fungicide-treated seed used to establish conventional fields. The spatial and spatiotemporal dynamics of SLB epidemics in six onion fields were evaluated along linear transects in 2017 and 2018. Average SLB incidence increased from 0 to 100% throughout the cropping seasons with an average final lesion length of 28.3 cm. Disease progress was typical of a polycyclic epidemic and the logistic model provided the best fit to 83.3% of the datasets. Spatial patterns were better described by the beta-binomial than binomial distribution in half of the datasets (50%) and random patterns were more frequently observed by the index of dispersion (59%). Geostatistical analyses also found a low frequency of datasets with aggregation (60%). Spatiotemporal analysis of epidemics detected that the aggregation was influenced by disease incidence. However, diseased units were not frequently associated with the previous time period according to the spatiotemporal association function of spatial analyses by distance indices. Variable spatial patterns suggested mixed inoculum sources dependent upon location, and likely an external inoculum source at the sampling scale used in this study. A small-plot replicated trial was also conducted in each of 2 years to quantify the effect of S. vesicarium-infested onion residue on SLB epidemics in a field isolated from other onion fields. SLB incidence was significantly reduced in plots without residue compared with those in which residue remained on the soil surface. Burial of infested residue also significantly reduced epidemic progress in 1 year. The effect of infested onion residue on SLB epidemics in the subsequent onion crop suggests rotation or residue management may have a substantial effect on epidemics. However, the presence of an inoculum source external to fields in onion production regions, as indicated by a lack of spatial aggregation, may reduce the efficacy of in-field management techniques.


Assuntos
Fungicidas Industriais , Fungos Mitospóricos , New York , Cebolas , Doenças das Plantas
8.
Plant Dis ; 106(7): 1857-1866, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35072508

RESUMO

Disease caused by Neocamarosporium betae (syn. Phoma betae, Pleospora betae) results in reductions in plant populations, foliar disease (Phoma leaf spot [PLS]), and root disease and decay in table beet. Disease caused by N. betae has reemerged as prevalent in organic table beet production in New York. The disease can also cause substantial issues in conventional table beet production. To evaluate in-field control options for conventional and organic table beet production, small-plot, replicated trials were conducted in each of two years (2019 and 2021). The fungicides, propiconazole and difenoconazole, and premixtures, pydiflumetofen + fludioxonil or pydiflumetofen + difenoconazole, provided excellent PLS and root decay control. Azoxystrobin provided excellent (69.9%) control of PLS in 2019 and lesser (40%) control in 2021. Field trial results complemented in vitro sensitivity testing of 30 New York N. betae isolates that were all highly sensitive to azoxystrobin (mean effective concentration to reduce mycelial growth by 50%, EC50 = 0.0205 µg/ml) and propiconazole (mean EC50 = 0.0638 µg/ml). Copper octanoate and microbial biopesticides containing either Bacillus amyloliquefaciens D747 or B. mycoides strain J provided moderate (68.5 to 74.6%) PLS control as reflected in epidemic progress. The Gompertz model provided the best fit to PLS epidemics reflecting a polycyclic epidemic. Reductions in PLS severity were associated with significant decreases in Phoma root decay and increases in canopy health and the time-to-death of leaves compared with nontreated control plots. Prolonging leaf survival is critical for mechanical harvest of roots. These findings underpin the design of programs for foliar disease control in conventional and organic table beet production. Assessment of PLS severity in the field will better inform postharvest management decisions.


Assuntos
Beta vulgaris , Ascomicetos , New York , Phoma , Doenças das Plantas/prevenção & controle
9.
Plant Dis ; 105(9): 2453-2465, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33529070

RESUMO

Sampling strategies that effectively assess disease intensity in the field are important to underpin management decisions. To develop a sequential sampling plan for the incidence of Cercospora leaf spot (CLS), caused by Cercospora beticola, 31 table beet fields were assessed in the state of New York. Assessments of CLS incidence were performed in six leaves arbitrarily selected in 51 sampling locations along each of three to six linear transects per field. Spatial pattern analyses were performed, and results were used to develop sequential sampling estimation and classification models. CLS incidence (p) ranged from 0.13 to 0.92 with a median of 0.31, and beta-binomial distribution, which is reflective of aggregation, best described the spatial patterns observed. Aggregation was commonly detected (>95%) by methods using the point-process approach, runs analyses, and autocorrelation up to the fourth spatial lag. For Spatial Analysis by Distance Indices, or SADIE, 45% of the datasets were classified as a random pattern. In the sequential sampling estimation and classification models, disease units are sampled until a prespecified target is achieved. For estimation, the goal was sampling CLS incidence with a preselected coefficient of variation (C). Achieving the C = 0.1 was challenging with <51 sampling units, and only observed on datasets with incidence >0.3. Reducing the level of precision, i.e., increasing C to 0.2, allowed the preselected C to be achieved with a lower number of sampling units and with an estimated incidence ([Formula: see text]) close to the true value of p. For classification, the goal was to classify the datasets above or below prespecified thresholds (pt) used for CLS management. The average sample number, or ASN, was determined by Monte Carlo simulations, and was between 20 and 45 at disease incidence values close to pt, and approximately 11 when far from pt. Correct decisions occurred in >76% of the validation datasets. Results indicated these sequential sampling plans can be used to effectively assess CLS incidence in table beet fields.


Assuntos
Ascomicetos , Beta vulgaris , Epidemias , Cercospora , New York , Doenças das Plantas
10.
Mol Plant Microbe Interact ; 33(4): 562-564, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31916923

RESUMO

Stemphylium leaf blight caused by Stemphylium vesicarium was recently identified as an emerging disease and dominant in the foliar disease complex affecting onion in New York. Here, we report the genomes of two isolates of S. vesicarium, On16-63 and On16-391. The availability of the genomes will accelerate genomic studies of S. vesicarium, including population biology, sexual reproduction, and fungicide resistance. Additionally, comparative genomics with the other published genome of S. vesicarium causing brown spot of pear will help understand pathogen biology and underpin the development of management strategies for this disease.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Cebolas , Genoma Fúngico/genética , New York , Cebolas/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pyrus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA