RESUMO
In recent years, antibody conjugates have evolved as state-of-the-art options for diagnostic and therapeutic applications. During site-selective antibody conjugation, incomplete rebridging of antibody chains limits the homogeneity of conjugates and calls for the development of new rebridging agents. Herein, we report a dibromopyrazine derivative optimized to reach highly homogeneous conjugates rapidly and with high conversion on rebridging of trastuzumab, even providing a feasible route for antibody modification in acidic conditions. Furthermore, coupling a fluorescent dye and a cytotoxic drug resulted in effective antibody conjugates with excellent serum stability and in vitro selectivity, demonstrating the utility of the dibromopyrazine rebridging agent to produce on-demand future antibody conjugates for diagnostic or therapeutic applications.
Assuntos
Imunoconjugados , Pirazinas , Trastuzumab , Pirazinas/química , Imunoconjugados/química , Humanos , Trastuzumab/química , Corantes Fluorescentes/químicaRESUMO
SuFEx chemistry is based on the unique reactivity of the sulfonyl fluoride group with a range of nucleophiles. Accordingly, sulfonyl fluorides label multiple nucleophilic amino acid residues, making these reagents popular in both chemical biology and medicinal chemistry applications. The reactivity of sulfonyl fluorides nominates this warhead chemotype as a candidate for an external, activation-free general labelling tag. Here, we report the synthesis and characterization of a small sulfonyl fluoride library that yielded the 3-carboxybenzenesulfonyl fluoride warhead for tagging tractable targets at nucleophilic residues. Based on these results, we propose that coupling diverse fragments to this warhead would result in a library of sulfonyl fluoride bits (SuFBits), available for screening against protein targets. SuFBits will label the target if it binds to the core fragment, which facilitates the identification of weak fragments by mass spectrometry.
Assuntos
Aminoácidos , Fluoretos , Fluoretos/química , Aminoácidos/química , Ácidos Sulfínicos/química , Espectrometria de MassasRESUMO
Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes.
Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Cisteína/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteoma/análise , Proteoma/metabolismo , Cisteína/metabolismo , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Proteoma/químicaRESUMO
Here we present WIDOCK, a virtual screening protocol that supports the selection of diverse electrophiles as covalent inhibitors by incorporating ligand reactivity towards cysteine residues into AutoDock4. WIDOCK applies the reactive docking method (Backus et al. in Nature 534:570-574, 2016) and extends it into a virtual screening tool by introducing facile experimental or computational parametrization and a ligand focused evaluation scheme together with a retrospective and prospective validation against various therapeutically relevant targets. Parameters accounting for ligand reactivity are derived from experimental reaction kinetic data or alternatively from computed reaction barriers. The performance of this docking protocol was first evaluated by investigating compound series with diverse warhead chemotypes against KRASG12C, MurA and cathepsin B. In addition, WIDOCK was challenged on larger electrophilic libraries screened against OTUB2 and NUDT7. These retrospective analyses showed high sensitivity in retrieving experimental actives, by also leading to superior ROC curves, AUC values and better enrichments than the standard covalent docking tool available in AutoDock4 when compound collections with diverse warheads were investigated. Finally, we applied WIDOCK for the prospective identification of covalent human MAO-A inhibitors acting via a new mechanism by binding to Cys323. The inhibitory activity of several predicted compounds was experimentally confirmed and the labelling of Cys323 was proved by subsequent MS/MS measurements. These findings demonstrate the usefulness of WIDOCK as a warhead-sensitive, covalent virtual screening protocol.
Assuntos
Alquil e Aril Transferases/química , Catepsina B/química , Inibidores Enzimáticos/química , Proteínas Proto-Oncogênicas p21(ras)/química , Sequência de Aminoácidos , Sítios de Ligação , Cisteína/química , Glutationa/química , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Software , Relação Estrutura-AtividadeRESUMO
Targeted covalent inhibitors represent an increasingly popular approach to modulate challenging drug targets. Since covalent and non-covalent interactions are both contributing to the affinity of these compounds, evaluation of their reactivity is a key-step to find feasible warheads. There are well-established HPLC- and NMR-based kinetic assays to tackle this task, however, they use a variety of cysteine-surrogates including cysteamine, cysteine or acetyl-cysteine and GSH. The diverse nature of the thiol sources often makes the results incomparable that prevents compiling a comprehensive knowledge base for the design of covalent inhibitors. To evaluate kinetic measurements from different sources we performed a comparative analysis of the different thiol surrogates against a designed set of electrophilic fragments equipped with a range of warheads. Our study included seven different thiol models and 13 warheads resulting in a reactivity matrix analysed thoroughly. We found that the reactivity profile might be significantly different for various thiol models. Comparing the different warheads, we concluded that - in addition to its human relevance - glutathione (GSH) provided the best estimate of reactivity with highest number of true positives identified.
Assuntos
Sondas Moleculares/síntese química , Compostos de Sulfidrila/química , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Glutationa , Humanos , Cinética , Sondas Moleculares/química , Estrutura Molecular , Bibliotecas de Moléculas PequenasRESUMO
Covalent drugs might bear electrophiles to chemically modify their targets and have the potential to target previously undruggable proteins with high potency. Covalent binding of drug-size molecules includes a noncovalent recognition provided by secondary interactions and a chemical reaction leading to covalent complex formation. Optimization of their covalent mechanism of action should involve both types of interactions. Noncovalent and covalent binding steps can be characterized by an equilibrium dissociation constant (KI) and a reaction rate constant (kinact), respectively, and they are affected by both the warhead and the scaffold of the ligand. The relative contribution of these two steps was investigated on a prototypic drug target KRASG12C, an oncogenic mutant of KRAS. We used a synthetically more accessible nonchiral core derived from ARS-1620 that was equipped with four different warheads and a previously described KRAS-specific basic side chain. Combining these structural changes, we have synthesized novel covalent KRASG12C inhibitors and tested their binding and biological effect on KRASG12C by various biophysical and biochemical assays. These data allowed us to dissect the effect of scaffold and warhead on the noncovalent and covalent binding event. Our results revealed that the atropisomeric core of ARS-1620 is not indispensable for KRASG12C inhibition, the basic side chain has little effect on either binding step, and warheads affect the covalent reactivity but not the noncovalent binding. This type of analysis helps identify structural determinants of efficient covalent inhibition and may find use in the design of covalent agents.
Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Humanos , Ligação Proteica , Mutação , LigantesRESUMO
Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.
Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Sítios de Ligação , Espectrometria de Massas em Tandem , Ligantes , Proteínas Repressoras/metabolismoRESUMO
Fragment screening is a popular strategy of generating viable chemical starting points especially for challenging targets. Although fragments provide a better coverage of chemical space and they have typically higher chance of binding, their weak affinity necessitates highly sensitive biophysical assays. Here, we introduce a screening concept that combines evolutionary optimized fragment pharmacophores with the use of a photoaffinity handle that enables high hit rates by LC-MS-based detection. The sensitivity of our screening protocol was further improved by a target-conjugated photocatalyst. We have designed, synthesized, and screened 100 diazirine-tagged fragments against three benchmark and three therapeutically relevant protein targets of different tractability. Our therapeutic targets included a conventional enzyme, the first bromodomain of BRD4, a protein-protein interaction represented by the oncogenic KRasG12D protein, and the yet unliganded N-terminal domain of the STAT5B transcription factor. We have discovered several fragment hits against all three targets and identified their binding sites via enzymatic digestion, structural studies and modeling. Our results revealed that this protocol outperforms screening traditional fully functionalized and photoaffinity fragments in better exploration of the available binding sites and higher hit rates observed for even difficult targets.
RESUMO
BACKGROUND AND PURPOSE: To date, there are limited options for severe Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 virus. As ADP-ribosylation events are involved in regulating the life cycle of coronaviruses and the inflammatory reactions of the host; we have, here, assessed the repurposing of registered PARP inhibitors for the treatment of COVID-19. EXPERIMENTAL APPROACH: The effects of PARP inhibitors on virus uptake were assessed in cell-based experiments using multiple variants of SARS-CoV-2. The binding of rucaparib to spike protein was tested by molecular modelling and microcalorimetry. The anti-inflammatory properties of rucaparib were demonstrated in cell-based models upon challenging with recombinant spike protein or SARS-CoV-2 RNA vaccine. KEY RESULTS: We detected high levels of oxidative stress and strong PARylation in all cell types in the lungs of COVID-19 patients, both of which negatively correlated with lymphocytopaenia. Interestingly, rucaparib, unlike other tested PARP inhibitors, reduced the SARS-CoV-2 infection rate through binding to the conserved 493-498 amino acid region located in the spike-ACE2 interface in the spike protein and prevented viruses from binding to ACE2. In addition, the spike protein and viral RNA-induced overexpression of cytokines was down-regulated by the inhibition of PARP1 by rucaparib at pharmacologically relevant concentrations. CONCLUSION AND IMPLICATIONS: These results point towards repurposing rucaparib for treating inflammatory responses in COVID-19.
Assuntos
COVID-19 , Indóis , Inibidores de Poli(ADP-Ribose) Polimerases , SARS-CoV-2 , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Indóis/farmacologia , COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Tratamento Farmacológico da COVID-19 , Chlorocebus aethiops , Células Vero , Antivirais/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Reposicionamento de Medicamentos , Betacoronavirus/efeitos dos fármacosRESUMO
G12C mutant KRas is considered druggable by allele-specific covalent inhibitors due to the nucleophilic character of the oncogenic mutant cysteine at position 12. Discovery of these inhibitors requires the optimization of both covalent and noncovalent interactions. Here, we report covalent fragment screening of our electrophilic fragment library of diverse non-covalent scaffolds equipped with 40 different electrophilic functionalities to identify fragments as suitable starting points targeting Cys12. Screening the library against KRasG12C using Ellman's free thiol assay, followed by protein NMR and cell viability assays, resulted in two potential inhibitor chemotypes. Characterization of these scaffolds in in vitro cellular- and in vivo xenograft models revealed them as promising starting points for covalent drug discovery programs.
Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first committed step in the cytoplasmic part of peptidoglycan biosynthesis and is a validated target enzyme for antibacterial drug discovery; the inhibitor fosfomycin has been used clinically for decades. Like fosfomycin, most MurA inhibitors are small heterocyclic compounds that inhibit the enzyme by forming a covalent bond with the active site cysteine. The reactive chloroacetamide group was selected from a series of suitable electrophilic thiol-reactive warheads. The predominantly one-step synthesis led to the construction of the final library of 47 fragment-sized chloroacetamide compounds. Several new E. coli MurA inhibitors were identified, with the most potent compound having an IC50 value in the low micromolar range. The electrophilic reactivity of all chloroacetamide fragments in our library was evaluated by a high-throughput spectrophotometric assay using the reduced Ellman reagent as a surrogate for the cysteine thiol. LC-MS/MS experiments confirmed the covalent binding of the most potent inhibitor to Cys115 of the digested MurA enzyme. The covalent binding was further investigated by a biochemical time-dependent assay and a dilution assay, which confirmed the irreversible and time-dependent mode of action. The efficacy of chloroacetamide derivatives against MurA does not correlate with their thiol reactivity, making the active fragments valuable starting points for fragment-based development of new antibacterial agents targeting MurA.
Assuntos
Alquil e Aril Transferases , Fosfomicina , Fosfomicina/química , Peptidoglicano , Escherichia coli , Cisteína , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/química , Inibidores Enzimáticos/químicaRESUMO
Intrinsically disordered proteins (IDPs) play important roles in disease pathologies; however, their lack of defined stable 3D structures make traditional drug design strategies typically less effective against these targets. Based on promising results of targeted covalent inhibitors (TCIs) on challenging targets, we have developed a covalent design strategy targeting IDPs. As a model system we chose tau, an endogenous IDP of the central nervous system that is associated with severe neurodegenerative diseases via its aggregation. First, we mapped the tractability of available cysteines in tau and prioritized suitable warheads. Next, we introduced the selected vinylsulfone warhead to the non-covalent scaffolds of potential tau aggregation inhibitors. The designed covalent tau binders were synthesized and tested in aggregation models, and inhibited tau aggregation effectively. Our results revealed the usefulness of the covalent design strategy against therapeutically relevant IDP targets and provided promising candidates for the treatment of tauopathies.
Assuntos
Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas , Tauopatias , Cisteína , Desenho de Fármacos , Humanos , Proteínas Intrinsicamente Desordenadas/química , Doenças Neurodegenerativas/metabolismo , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismoRESUMO
Heterocyclic electrophiles as small covalent fragments showed promising inhibitory activity on the antibacterial target MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase, EC:2.5.1.7). Here, we report the second generation of heterocyclic electrophiles: the quaternized analogue of the heterocyclic covalent fragment library with improved reactivity and MurA inhibitory potency. Quantum chemical reaction barrier calculations, GSH (L-glutathione) reactivity assay, and thrombin counter screen were also used to demonstrate and explain the improved reactivity and selectivity of the N-methylated heterocycles and to compare the two generations of heterocyclic electrophiles.
RESUMO
Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.
Assuntos
COVID-19 , Fluorocarbonos , Antibacterianos/química , Antivirais/química , Catepsinas/farmacologia , Fluorocarbonos/farmacologia , Glicopeptídeos/química , Bactérias Gram-Positivas , Humanos , SARS-CoV-2 , Teicoplanina/farmacologiaRESUMO
Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (ß5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the ß5i subunit was shown and selectivity against the ß5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the ß5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.
Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Oxazóis/química , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tionas/químicaRESUMO
Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.
Assuntos
Cisteína/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Treonina/química , Ubiquitina/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Química Computacional , Cisteína/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Relação Estrutura-Atividade , Treonina/imunologia , Ubiquitina/imunologiaRESUMO
Targeted covalent inhibitors and chemical probes have become integral parts of drug discovery approaches. Given the advantages of fragment-based drug discovery, screening electrophilic fragments emerged as a promising alternative to discover and validate novel targets and to generate viable chemical starting points even for targets that are barely tractable. In this review, we present recent principles and considerations in the design of electrophilic fragment libraries from the selection of the appropriate covalent warhead through the design of the covalent fragment to the compilation of the library. We then summarize recent screening methodologies of covalent fragments against surrogate models, proteins, and the whole proteome, or living cells. Finally, we highlight recent drug discovery applications of covalent fragment libraries.
Assuntos
Bibliotecas de Moléculas Pequenas/farmacologia , Descoberta de Drogas/métodos , Humanos , Proteínas/metabolismo , Proteoma/efeitos dos fármacosRESUMO
Intrinsically disordered proteins (IDPs) play important roles in the regulation of cellular function and in disease, and thus they represent an important group of therapeutic targets. Yet, members of this "disorderome" have not yet been successfully targeted by drugs, primarily because traditional design principles cannot be applied to their highly dynamic, heterogeneous structural states. Binders developed against IDPs so far suffer from very weak binding and inability to act in a cellular context. Here, we describe a possible generic method for the targeting of IDPs via covalent modification, which could entail specific and strong binding and inhibitory potential, making such "warheads" reasonable starting points of drug-development efforts. We demonstrate this principle by addressing the cysteine-specific covalent modification of calpastatin, the IDP inhibitor of the calcium-dependent cysteine protease calpain. We describe the protocol for monitoring the covalent modification of the inhibitor, measuring the Ki of its inhibition and comparing it to the Kd of its interaction with the enzyme. Our premise is that the underlying principles can be easily adapted to screen for molecules targeting other, disease-related, IDPs in the future.
Assuntos
Proteínas de Ligação ao Cálcio/química , Calpaína/antagonistas & inibidores , Terapia de Alvo Molecular , Proteínas de Ligação ao Cálcio/farmacologia , Dicroísmo Circular/métodos , Cisteína/química , Ácido Ditionitrobenzoico , Desenho de Fármacos , Eletroforese em Gel de Poliacrilamida/métodos , Humanos , Interferometria , Proteínas Intrinsicamente Desordenadas/química , Cinética , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem/métodosRESUMO
Targeted covalent inhibitors represent a viable strategy to block protein kinases involved in different disease pathologies. Although a number of computational protocols have been published for identifying druggable cysteines, experimental approaches are limited for mapping the reactivity and accessibility of these residues. Here, we present a ligand based approach using a toolbox of fragment-sized molecules with identical scaffold but equipped with diverse covalent warheads. Our library represents a unique opportunity for the efficient integration of warhead-optimization and target-validation into the covalent drug development process. Screening this probe kit against multiple kinases could experimentally characterize the accessibility and reactivity of the targeted cysteines and helped to identify suitable warheads for designed covalent inhibitors. The usefulness of this approach has been confirmed retrospectively on Janus kinase 3 (JAK3). Furthermore, representing a prospective validation, we identified Maternal embryonic leucine zipper kinase (MELK), as a tractable covalent target. Covalently labelling and biochemical inhibition of MELK would suggest an alternative covalent strategy for MELK inhibitor programs.
Assuntos
Cisteína/metabolismo , Janus Quinase 3/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Transporte de Elétrons , Janus Quinase 3/antagonistas & inibidores , Ligantes , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologiaRESUMO
Drug discovery programs against the antibacterial target UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) have already resulted in covalent inhibitors having small three- and five-membered heterocyclic rings. In the current study, the reactivity of four-membered rings was carefully modulated to obtain a novel family of covalent MurA inhibitors. Screening a small library of cyclobutenone derivatives led to the identification of bromo-cyclobutenaminones as new electrophilic warheads. The electrophilic reactivity and cysteine specificity have been determined in a glutathione (GSH) and an oligopeptide assay, respectively. Investigating the structure-activity relationship for MurA suggests a crucial role for the bromine atom in the ligand. In addition, MS/MS experiments have proven the covalent labelling of MurA at Cys115 and the observed loss of the bromine atom suggests a net nucleophilic substitution as the covalent reaction. This new set of compounds might be considered as a viable chemical starting point for the discovery of new MurA inhibitors.