Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell Proteomics ; 22(9): 100632, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37586548

RESUMO

Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.


Assuntos
Células Supressoras Mieloides , Camundongos , Humanos , Animais , Células Supressoras Mieloides/metabolismo , Ensaios de Triagem em Larga Escala , Proteoma/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361000

RESUMO

The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.


Assuntos
Microfluídica/métodos , Linfócitos T/fisiologia , Migração Transendotelial e Transepitelial , Adesão Celular , Linhagem Celular Tumoral , Células Cultivadas , Quimiocina CXCL12/metabolismo , Endotélio Vascular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Melanoma/metabolismo , Melanoma/patologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Nat Chem Biol ; 9(4): 247-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23416332

RESUMO

Inhibition of Sonic hedgehog (Shh) signaling is of great clinical interest. Here we exploit Hedgehog acyltransferase (Hhat)-mediated Shh palmitoylation, a modification critical for Shh signaling, as a new target for Shh pathway inhibition. A target-oriented high-throughput screen was used to identify small-molecule inhibitors of Hhat. In cells, these Hhat inhibitors specifically block Shh palmitoylation and inhibit autocrine and paracrine Shh signaling.


Assuntos
Aciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Inibidores Enzimáticos/química , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Lipoilação , Luciferases , Camundongos , Porcos-Espinhos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Transfecção
4.
Mol Cancer Ther ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162025

RESUMO

While A2A adenosine receptor (AR) was considered as a major contributor to adenosine-mediated immunosuppression, A2B, having the lowest affinity to adenosine, has also emerged as a potential contributor to tumor promotion. Therefore, in adenosine-rich tumor microenvironment (TME), where A2B could be complementary and/or compensatory to A2A, simultaneous targeting of A2A and A2B ARs can provide higher potential for cancer immunotherapy. We developed M1069 - a highly selective dual antagonist of the A2A and A2B AR. In assays with primary human and murine immune cells, M1069 rescued IL 2 production from T cells (A2A dependent) and inhibited VEGF production by myeloid cells (A2B dependent) in adenosine-high settings. M1069 also demonstrated superior suppression of secretion of pro tumorigenic cytokines CXCL1, CXCL5, and rescue of IL 12 secretion from adenosine differentiated dendritic cells compared to an A2A selective antagonist (A2Ai). In a one-way mixed lymphocyte reaction (MLR) assay, adenosine differentiated human and murine dendritic cells treated with M1069 demonstrated superior T cell stimulatory activity compared to dendritic cells differentiated in presence of A2Ai. In vivo, M1069 decreased tumor growth as a monotherapy and enhanced anti-tumor activity of bintrafusp alfa (BA) or cisplatin in syngeneic adenosinehi/CD73hi 4T1 breast tumor model, but not in the CD73 knockout (KO) 4T1 tumor model or in adenosinelow/CD73low MC38 murine colon carcinoma model. In summary, our dual A2A/A2B AR antagonist M1069 may counteract immune-suppressive mechanisms of high concentrations of adenosine in vitro and in vivo and enhance the anti-tumor activity of other agents, including BA and cisplatin.

5.
Oncotarget ; 8(30): 48660-48670, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27750213

RESUMO

Acetyl-CoA carboxylase (ACC) is the rate-limiting enzyme in de novo fatty acid synthesis, and its ACC1 isoform is overexpressed in pancreatic and various other cancers. The activity of many oncogenic signaling molecules, including WNT and Hedgehog (HH), is post-translationally modified by lipidation. Here, we report that inhibition of ACC by a small molecule inhibitor, BAY ACC002, blocked WNT3A lipidation, secretion, and signaling. In pancreatic cancer cells, where WNT and HH are key oncogenic drivers, ACC inhibition simultaneously suppressed WNT and HH signaling, and led to anti-proliferative effects. Treatment with ACC inhibitors blocked tumor growth and converted the poorly differentiated histological phenotype to epithelial phenotype in multiple cell line-based and patient-derived pancreatic cancer xenograft models. Together, our data highlight the potential utility of ACC inhibitors for pancreatic cancer treatment, and provide novel insight into the link between upregulated de novo fatty acid synthesis in cancer cells, protein lipidation, and oncogenic signaling.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Proteína Wnt3A/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA