Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 291(29): 15169-84, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27231350

RESUMO

Endurance and resistance exercise training induces specific and profound changes in the skeletal muscle transcriptome. Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) coactivators are not only among the genes differentially induced by distinct training methods, but they also participate in the ensuing signaling cascades that allow skeletal muscle to adapt to each type of exercise. Although endurance training preferentially induces PGC-1α1 expression, resistance exercise activates the expression of PGC-1α2, -α3, and -α4. These three alternative PGC-1α isoforms lack the arginine/serine-rich (RS) and RNA recognition motifs characteristic of PGC-1α1. Discrete functions for PGC-1α1 and -α4 have been described, but the biological role of PGC-1α2 and -α3 remains elusive. Here we show that different PGC-1α variants can affect target gene splicing through diverse mechanisms, including alternative promoter usage. By analyzing the exon structure of the target transcripts for each PGC-1α isoform, we were able to identify a large number of previously unknown PGC-1α2 and -α3 target genes and pathways in skeletal muscle. In particular, PGC-1α2 seems to mediate a decrease in the levels of cholesterol synthesis genes. Our results suggest that the conservation of the N-terminal activation and repression domains (and not the RS/RNA recognition motif) is what determines the gene programs and splicing options modulated by each PGC-1α isoform. By using skeletal muscle-specific transgenic mice for PGC-1α1 and -α4, we could validate, in vivo, splicing events observed in in vitro studies. These results show that alternative PGC-1α variants can affect target gene expression both quantitatively and qualitatively and identify novel biological pathways under the control of this system of coactivators.


Assuntos
Processamento Alternativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Células Cultivadas , Sequência Conservada , Éxons , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
2.
Skelet Muscle ; 9(1): 26, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31666122

RESUMO

BACKGROUND: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia. METHODS: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1-calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling. RESULTS: Here, we identify LIM and cysteine-rich domains 1 (LMCD1) as a positive regulator of muscle mass, that increases muscle protein synthesis and fiber size. LMCD1 expression in vivo was sufficient to increase specific force with lower requirement for calcium handling and to reduce muscle fatigue. Conversely, silencing LMCD1 expression impairs calcium handling and force, and induces muscle fatigue without overt atrophy. The actions of LMCD1 were dependent on calcineurin, as its inhibition using cyclosporine A reverted the observed hypertrophic phenotype. Finally, we determined that LMCD1 represses the expression of myoregulin, a known negative regulator of muscle performance. Interestingly, we observed that skeletal muscle LMCD1 expression is reduced in patients with skeletal muscle disease. CONCLUSIONS: Our gain- and loss-of-function studies show that LMCD1 controls protein synthesis, muscle fiber size, specific force, Ca2+ handling, and fatigue resistance. This work uncovers a novel role for LMCD1 in the regulation of skeletal muscle mass and function with potential therapeutic implications.


Assuntos
Proteínas Correpressoras/genética , Proteínas Correpressoras/fisiologia , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/fisiologia , Músculo Esquelético/fisiologia , Animais , Calcineurina/fisiologia , Inibidores de Calcineurina/farmacologia , Cálcio/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Hipertrofia/genética , Hipertrofia/patologia , Hipertrofia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Força Muscular/genética , Força Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
3.
Cell Metab ; 27(2): 378-392.e5, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414686

RESUMO

The role of tryptophan-kynurenine metabolism in psychiatric disease is well established, but remains less explored in peripheral tissues. Exercise training activates kynurenine biotransformation in skeletal muscle, which protects from neuroinflammation and leads to peripheral kynurenic acid accumulation. Here we show that kynurenic acid increases energy utilization by activating G protein-coupled receptor Gpr35, which stimulates lipid metabolism, thermogenic, and anti-inflammatory gene expression in adipose tissue. This suppresses weight gain in animals fed a high-fat diet and improves glucose tolerance. Kynurenic acid and Gpr35 enhance Pgc-1α1 expression and cellular respiration, and increase the levels of Rgs14 in adipocytes, which leads to enhanced beta-adrenergic receptor signaling. Conversely, genetic deletion of Gpr35 causes progressive weight gain and glucose intolerance, and sensitizes to the effects of high-fat diets. Finally, exercise-induced adipose tissue browning is compromised in Gpr35 knockout animals. This work uncovers kynurenine metabolism as a pathway with therapeutic potential to control energy homeostasis.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Metabolismo Energético , Homeostase , Inflamação/metabolismo , Inflamação/patologia , Ácido Cinurênico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Dieta Hiperlipídica , Epididimo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal , Proteínas RGS/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Gordura Subcutânea/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA