Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612419

RESUMO

Somatostatin receptor ligands (SRLs) with high affinity for somatostatin receptors 2 and 5 (SSTR2 and SSTR5) are poorly efficacious in NF-PitNETs, expressing high levels of SSTR3. ITF2984 is a pan-SSTR ligand with high affinity for SSTR3, able to induce SSTR3 activation and to exert antitumoral activity in the MENX rat model. The aim of this study was to test ITF2984's antiproliferative and proapoptotic effects in NF-PitNET primary cultured cells derived from surgically removed human tumors and to characterize their SSTR expression profile. We treated cells derived from 23 NF-PitNETs with ITF2984, and a subset of them with octreotide, pasireotide (SRLs with high affinity for SSTR2 or 5, respectively), or cabergoline (DRD2 agonist) and we measured cell proliferation and apoptosis. SSTR3, SSTR2, and SSTR5 expression in tumor tissues was analyzed by qRT-PCR and Western blot. We demonstrated that ITF2984 reduced cell proliferation (-40.8 (17.08)%, p < 0.001 vs. basal, n = 19 NF-PitNETs) and increased cell apoptosis (+41.4 (22.1)%, p < 0.001 vs. basal, n = 17 NF-PitNETs) in all tumors tested, whereas the other drugs were only effective in some tumors. In our model, SSTR3 expression levels did not correlate with ITF2984 antiproliferative nor proapoptotic effects. In conclusion, our data support a possible use of ITF2984 in the pharmacological treatment of NF-PitNET.


Assuntos
Antimitóticos , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Octreotida/farmacologia , Octreotida/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Receptores de Somatostatina/genética
2.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068896

RESUMO

The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this study were to test FLNA expression by immunohistochemistry in 119 ACCs and 26 adrenocortical adenomas (ACAs) and to evaluate its relationship with clinicopathological features and outcome in ACCs. We found that 71.4% of ACCs did not express FLNA, whereas FLNA absence was a rare event in ACAs (15.4%, p < 0.001 vs. ACCs). In addition, the expression of FLNA was associated with a less aggressive tumour behaviour in ACCs. Indeed, the subgroup of ACCs with high FLNA showed a lower ENSAT stage, Weiss score, and S-GRAS score compared to ACCs with low FLNA expression (p < 0.05). Moreover, patients with high FLNA had a longer overall survival than those with low FLNA (p < 0.05). In conclusion, our data suggest that FLNA may represent a "protective" factor in ACCs, and the integration of FLNA immunohistochemical expression in ACC tissues along with other clinical and molecular markers could be helpful to improve diagnostic accuracy and prognosis prediction in ACCs.


Assuntos
Neoplasias do Córtex Suprarrenal , Adenoma Adrenocortical , Carcinoma Adrenocortical , Filaminas , Humanos , Neoplasias do Córtex Suprarrenal/diagnóstico , Adenoma Adrenocortical/diagnóstico , Carcinoma Adrenocortical/diagnóstico , Filaminas/genética , Filaminas/metabolismo , Transdução de Sinais , Prognóstico
3.
Neuroendocrinology ; 112(1): 15-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33524974

RESUMO

Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases, the presence of germline mutations in specific genes predisposes to PitNET formation, as part of syndromic diseases or familial isolated pituitary adenomas, and associates to more aggressive, invasive, and drug-resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the α subunit of the stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNET drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNET clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNET clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/diagnóstico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia
4.
Neuroendocrinology ; 111(6): 568-579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32512568

RESUMO

Dopamine receptor type 2 (DRD2) agonists are the first-choice treatment for prolactin-secreting pituitary tumors but are poorly effective in nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs). DRD2 reduces AKT phosphorylation in lactotrophs, but no data are available in NF-PitNETs. DRD2 effects on AKT are mediated by a ß-arrestin 2-dependent mechanism in mouse striatum. The aim of this study was to investigate DRD2 effects on AKT phosphorylation and cell proliferation in human primary cultured NF-PitNET cells and in rat tumoral lactotroph cells MMQ, and to test ß-arrestin 2 involvement. We found that the DRD2 agonist BIM53097 induced a reduction of the p-AKT/total-AKT ratio in MMQ (-32.8 ± 17.6%, p < 0.001 vs. basal) and in a subset (n = 15/41, 36.6%) of NF-PitNETs (subgroup 1). In the remaining NF-PitNETs (subgroup 2), BIM53097 induced an increase in p-AKT. The ability of BIM53097 to reduce p-AKT correlated with its antimitotic effect, since the majority of subgroup 1 NF-PitNETs was responsive to BIM53097, and nearly all subgroup 2 NF-PitNETs were resistant. ß-Arrestin 2 was expressed in MMQ and in 80% of subgroup 1 NF-PitNETs, whereas it was undetectable in 77% of subgroup 2 NF-PitNETs. In MMQ, ß-arrestin 2 silencing prevented DRD2 inhibitory effects on p-AKT and cell proliferation. Accordingly, ß-arrestin 2 transfection in subgroup 2 NF-PitNETs conferred to BIM53097 the ability to inhibit both p-AKT and cell growth. In conclusion, we demonstrated that ß-arrestin 2 is required for DRD2 inhibitory effects on AKT phosphorylation and cell proliferation in MMQ and NF-PitNETs, paving the way for a potential role of ß-arrestin 2 as a biomarker predicting NF-PitNETs' responsiveness to treatment with dopamine agonists.


Assuntos
Neoplasias Hipofisárias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D2/metabolismo , beta-Arrestina 2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células Cultivadas , Agonistas de Dopamina/farmacologia , Humanos , Fosforilação/fisiologia , Ratos , Receptores de Dopamina D2/agonistas
5.
Neuroendocrinology ; 110(7-8): 642-652, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31574507

RESUMO

The high expression of somatostatin receptor 2 (SST2) in growth hormone (GH)-secreting tumors represents the rationale for the clinical use of somatostatin analogs (SSAs) in acromegaly. Recently, the cytoskeletal protein Filamin A (FLNA) has emerged as key modulator of the responsiveness of GH-secreting pituitary tumors to SSAs by regulating SST2 signaling and expression. The aim of this study was to explore FLNA involvement in SST2 intracellular trafficking in tumor somatotroph cells. By biotinylation assay, we found that FLNA silencing abolished octreotide-mediated SST2 internalization in rat GH3 cell line (28.0 ± 2.7 vs. 4 ± 4.3% SST2 internalization, control versus FLNA small interfering RNAs (siRNA) cells, respectively, p < 0.001) and human GH-secreting primary cultured cells (70.3 ± 21.1 vs. 24 ± 19.2% SST2 internalization, control versus FLNA siRNA cells, respectively, p < 0.05). In addition, confocal imaging revealed impaired SST2 recycling to the plasma membrane in FLNA silenced GH3 cells. Coimmunoprecipitation and immunofluorescence experiments showed that FLNA, as well as ß-arrestin2, is timely dependent recruited to octreotide-stimulated SST2 receptors both in rat and human tumor somatotroph cells. Although FLNA expression knock down did not prevent the formation of ß-arrestin2-SST2 complex in GH3 cells, it significantly impaired efficient SST2 loading into cytosolic vesicles positive for the early endocytic and recycling markers Rab5 and 4, respectively (33.7 ± 8.9% down to 25.9 ± 6.9%, p < 0.05, and 28.4 ± 7.4% down to 17.6 ± 5.7%, p < 0.01, for SST2-Rab5 and SST2-Rab4 colocalization, respectively, in control versus FLNA siRNA cells). Altogether these data support an important role for FLNA in the mediation of octreotide-induced SST2 trafficking in GH-secreting pituitary tumor cells through Rab5 and 4 sorting endosomes.


Assuntos
Adenoma/metabolismo , Endossomos/fisiologia , Filaminas/fisiologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Receptores de Somatostatina/metabolismo , Adenoma/patologia , Animais , Células Cultivadas , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Humanos , Octreotida/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Somatotrofos/efeitos dos fármacos , Somatotrofos/metabolismo , Somatotrofos/patologia , Proteínas rab4 de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
Exp Cell Res ; 346(1): 85-90, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27321957

RESUMO

In this review, we discuss the molecular mechanisms and prognostic implications of the protein kinase A (PKA) signaling pathway in human tumors, with special emphasis on the malignant thyroid. The PKA signaling pathway is differentially activated by the expression of regulatory subunits 1 (R1) and 2 (R2), whose levels change during development, differentiation, and neoplastic transformation. Following the identification of gene mutations within the PKA regulatory subunit R1A (PRKAR1A) that cause Carney complex-associated neoplasms, several investigators have studied PRKAR1A expression in sporadic thyroid tumors. The PKA regulatory subunit R2B (PRKAR2B) is highly expressed in benign, as well as in malignant differentiated and undifferentiated lesions. PRKAR1A is highly expressed in follicular adenomas and malignant lesions with a statistically significant gradient between benign and malignant tumors; however, it is not expressed in hyperplastic nodules. Although the importance of PKA in human malignancy outcomes is not completely understood, PRKAR1A expression correlates with tumor dimension in malignant lesions. Additional studies are needed to determine whether a relationship exists between PKA subunit expression and clinical outcomes, particularly in undifferentiated tumors. In conclusion, the R1A subunit might be a good molecular candidate for the targeted treatment of malignant thyroid tumors.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Subunidades Proteicas/metabolismo , Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/enzimologia , Neoplasias da Glândula Tireoide/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Feminino , Humanos , Hiperplasia , Masculino , Pessoa de Meia-Idade , Prognóstico , Glândula Tireoide/patologia
8.
J Cell Sci ; 126(Pt 2): 638-44, 2013 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-23178946

RESUMO

Despite intensive investigation over the past 20 years, the specific role played by individual G(i) protein family members in mediating complex cellular effects is still largely unclear. Therefore, we investigated the role of specific G(i) proteins in mediating somatostatin (SS) effects in somatotroph cells. Because our previous data showed that SS receptor type 5 (SST5) carrying a spontaneous R240W mutation in the third intracellular loop had a similar ability to inhibit intracellular cAMP levels to the wild-type protein but failed to mediate inhibition of growth hormone (GH) release and cell proliferation, we used this model to check specific receptor-G-protein coupling by a bioluminescent resonance energy transfer analysis. In HEK293 cells, wild-type SST5 stimulated the activation of Gα(i1-3) and Gα(oA), B, whereas R240W SST5 maintained the ability to activate Gα(i1-3) and Gα(oB), but failed to activate the splicing variant Gα(oA). To investigate the role of the selective deficit in Gα(oA) coupling, we co-transfected human adenomatous somatotrophs with SST5 and a pertussis toxin (PTX)-resistant Gα(oA) (Gα(oA(PTX-r))) protein. In PTX-treated cells, Gα(oA(PTX-r)) rescued the ability of the selective SST5 analog BIM23206 to inhibit extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation, GH secretion and intracellular cAMP levels. Moreover, we demonstrated that silencing of Gα(oA) completely abolished SST5-mediated inhibitory effects on GH secretion and ERK1/2 phosphorylation, but not on cAMP levels. In conclusion, by analysing the coupling specificity of human SST5 to individual Gα(i) and Gα(o) subunits, we identified a crucial role for Gα(oA) signalling in human pituitary cells.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipófise/metabolismo , Receptores de Somatostatina/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Células HEK293 , Humanos , Fosforilação , Hipófise/citologia , Receptores de Somatostatina/genética , Transdução de Sinais , Transfecção
9.
Biochem Soc Trans ; 41(1): 166-71, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356278

RESUMO

Receptor coupling to different G-proteins and ß-arrestins has been described for a number of GPCRs (G-protein-coupled receptors), suggesting a multi-state model of receptor activation in which each receptor can assume a number of different active conformations, each capable of promoting the coupling to a specific effector. Consistently, functional-selective ligands and biased agonists have been described to be able to induce and/or stabilize only a subset of specific active conformations. Furthermore, GPCR mutants deficient in selective coupling have been reported. Functional selective ligands and receptor mutants thus constitute unique tools to dissect the specific roles of different effectors, in particular among the Gi/o family. In the present mini-review, we focus on (i) the identification of functional selective OXT (oxytocin)-derived peptides capable of activating single Gi/o isoforms, namely Gi1 or Gi3; and (ii) the characterization of an SS (somatostatin) receptor SST5 mutant selectively impaired in its GoA coupling. These analogues and receptor mutants represent unique tools for examining the contribution of Gi/o isoforms in complex biological responses and open the way for the development of drugs with peculiar selectivity profiles.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Mutação , Ocitocina/metabolismo , Isoformas de Proteínas/fisiologia , Receptores de Somatostatina/metabolismo , Ligantes , Receptores de Somatostatina/genética
10.
Orphanet J Rare Dis ; 18(1): 152, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37331934

RESUMO

BACKGROUND: Allgrove disease is a rare genetic syndrome characterized by adrenal insufficiency, alacrimia, achalasia and complex neurological involvement. Allgrove disease is due to recessive mutations in the AAAS gene, which encodes for the nucleoporin Aladin, implicated in the nucleocytoplasmic transport. The adrenal insufficiency has been suggested to rely on adrenal gland-ACTH resistance. However, the link between the molecular pathology affecting the nucleoporin Aladin and the glucocorticoid deficiency is still unknown. RESULTS: By analyzing postmortem patient's adrenal gland, we identified a downregulation of Aladin transcript and protein. We found a downregulation of Scavenger receptor class B-1 (SCARB1), a key component of the steroidogenic pathway, and SCARB1 regulatory miRNAs (mir125a, mir455) in patient's tissues. With the hypothesis of an impairment in the nucleocytoplasmic transport of the SCARB1 transcription enhancer cyclic AMP-dependent protein kinase (PKA), we detected a reduction of nuclear Phospho-PKA and a cytoplasmic mislocalization in patient's samples. CONCLUSIONS: These results shed a light on the possible mechanisms linking ACTH resistance, SCARB1 impairment, and defective nucleocytoplasmic transport.


Assuntos
Insuficiência Adrenal , Acalasia Esofágica , MicroRNAs , Humanos , Acalasia Esofágica/genética , Acalasia Esofágica/metabolismo , Acalasia Esofágica/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Regulação para Baixo/genética , Proteínas do Tecido Nervoso/genética , Insuficiência Adrenal/genética , Insuficiência Adrenal/metabolismo , Insuficiência Adrenal/patologia , Proteínas Nucleares/genética , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
11.
Cancers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370829

RESUMO

The molecular events underlying the variable effectiveness of dopamine receptor type 2 (DRD2) agonists in pituitary neuroendocrine tumors (PitNETs) are not known. Besides the canonical pathway induced by DRD2 coupling with Gi proteins, the ß-arrestin 2 pathway contributes to DRD2's antimitotic effects in PRL- and NF-PitNETs. A promising pharmacological strategy is the use of DRD2-biased agonists that selectively activate only one of these two pathways. The aim of the present study was to compare the effects of two biased DRD2 ligands, selectively activating the G protein (MLS1547) or ß-arrestin 2 (UNC9994) pathway, with unbiased DRD2 agonist cabergoline in PRL- and NF-PitNET cells. In rat tumoral pituitary PRL-secreting MMQ cells, UNC9994 reduced cell proliferation with a greater efficacy compared to cabergoline (-40.2 ± 20.4% vs. -21 ± 10.9%, p < 0.05), whereas the G-protein-biased agonist induced only a slight reduction. ß-arrestin 2 silencing, but not pertussis toxin treatment, reverted UNC9994 and cabergoline's antiproliferative effects. In a cabergoline-resistant PRL-PitNET primary culture, UNC9994 inhibited cell proliferation and PRL release. In contrast, in NF-PitNET primary cultures (n = 23), biased agonists did not show better antiproliferative effects than cabergoline. In conclusion, the preferential activation of the ß-arrestin 2 pathway by UNC9994 improves DRD2-mediated antiproliferative effects in PRL-PitNETs, suggesting a new pharmacological approach for resistant or poorly responsive tumors.

12.
Endocr Oncol ; 2(1): R24-R30, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435448

RESUMO

Adrenocorticotropic hormone (ACTH)-secreting pituitary tumors mainly express somatostatin receptor 5 (SSTR5) since SSTR2 is downregulated by the elevated levels of glucocorticoids that characterize patients with Cushing's disease (CD). SSTR5 is the molecular target of pasireotide, the only approved pituitary tumor-targeted drug for the treatment of CD. However, the molecular mechanisms that regulate SSTR5 are still poorly investigated. This review summarizes the experimental evidence supporting the role of the cytoskeleton actin-binding protein filamin A (FLNA) in the regulation of SSTR5 expression and signal transduction in corticotroph tumors. Moreover, the correlations between the presence of somatic USP8 mutations and the expression of SSTR5 will be reviewed. An involvement of glucocorticoid-mediated ß-arrestins modulation in regulating SSTRs expression and function in ACTH-secreting tumors will also be discussed.

13.
Endocr Oncol ; 2(1): R143-R152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37435454

RESUMO

Cell cytoskeleton proteins are involved in tumor pathogenesis, progression and pharmacological resistance. Filamin A (FLNA) is a large actin-binding protein with both structural and scaffold functions implicated in a variety of cellular processes, including migration, cell adhesion, differentiation, proliferation and transcription. The role of FLNA in cancers has been studied in multiple types of tumors. FLNA plays a dual role in tumors, depending on its subcellular localization, post-translational modification (as phosphorylation at Ser2125) and interaction with binding partners. This review summarizes the experimental evidence showing the critical involvement of FLNA in the complex biology of endocrine tumors. Particularly, the role of FLNA in regulating expression and signaling of the main pharmacological targets in pituitary neuroendocrine tumors, pancreatic neuroendocrine tumors, pulmonary neuroendocrine tumors and adrenocortical carcinomas, with implications on responsiveness to currently used drugs in the treatment of these tumors, will be discussed.

14.
Front Endocrinol (Lausanne) ; 13: 862789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712238

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although males and females are at equivalent risk of infection, males are more prone to develop a higher severity disease, regardless of age. The factors that mediate susceptibility to SARS-CoV-2 and transmission are still under investigation. A potential role has been attributed to differences in the immune systems response to viral antigens between males and females as well as to different regulatory actions played by sex-related hormones on the two crucial molecular effectors for SARS-CoV-2 infection, TMPRSS2 and ACE2. While few and controversial data about TMPRSS2 transcript regulation in lung cells are emerging, no data on protein expression and activity of TMPRSS2 have been reported. Aim of the present study was to search for possible modulatory actions played by sex-related hormones on TMPRSS2 and ACE2 expression in Calu-3 cells, to test the effects of sex-steroids on the expression of the 32kDa C-term fragment derived from autocatalitic cleavage of TMPRSS2 and its impact on priming of transiently transfected spike protein. Cells were stimulated with different concentrations of methyltrienolone (R1881) or estradiol for 30 h. No difference in mRNA and protein expression levels of full length TMPRSS2 was observed. However, the 32 kDa cleaved serine protease domain was increased after 100 nM R1881 (+2.36 ± 1.13 fold-increase vs control untreated cells, p < 0.05) and 10 nM estradiol (+1.90 ± 0.64, fold-increase vs control untreated cells, p < 0.05) treatment. Both R1881 and estradiol significantly increased the activating proteolytic cleavage of SARS-CoV-2 Spike (S) transfected in Calu-3 cells (+1.76 ± 0.18 and +1.99±,0.76 increase in S cleavage products at R1881 100nM and 10 nM estradiol treatment, respectively, p < 0.001 and p < 0.05 vs control untreated cells, respectively). Finally, no significant differences in ACE2 expression were observed between hormones-stimulated cells and untreated control cells. Altogether, these data suggest that both male and female sex-related hormones are able to induce a proteolityc activation of TMPRSS2, thus promoting viral infection, in agreement with the observation that males and females are equally infected by SARS-CoV-2.


Assuntos
COVID-19 , Serina Endopeptidases , Enzima de Conversão de Angiotensina 2/genética , COVID-19/enzimologia , Linhagem Celular , Estradiol/farmacologia , Feminino , Humanos , Pulmão/metabolismo , Masculino , Metribolona/farmacologia , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
15.
Orphanet J Rare Dis ; 17(1): 83, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197096

RESUMO

BACKGROUND: GNAS is a complex gene that encodes Gsα, a signaling protein that triggers a complex network of pathways. Heterozygous inactivating mutations in Gsα-coding GNAS exons cause hormonal resistance; on the contrary, activating mutations in Gsα result in constitutive cAMP stimulation. Recent research has described a clinical condition characterized by both gain and loss of Gsα function, due to a heterozygous de novo variant of the maternal GNAS allele. PATIENTS AND METHODS: We describe a girl with a complex combination of clinical signs and a new heterozygous GNAS variant. For the molecular analysis of GNAS gene, DNA samples of the proband and her parents were extracted from their peripheral blood samples. In silico analysis was performed to predict the possible in vivo effect of the detected novel genetic variant. The activity of Gsα protein was in vitro analyzed from samples of erythrocyte membranes, recovered from heparinized blood samples. RESULTS: We found a new heterozygous missense c.166A > T-(p.Ile56Phe) GNAS variant in exon 2, inherited from the mother that determined a reduced activity of 50% of Gsα protein function. The analysis of her parents showed a 20-25% reduction in Gsα protein activity in the mother and a normal function in the father. Clinically our patient presented a multisystemic disorder characterized by hyponatremia compatible with a nephrogenic syndrome of inappropriate antidiuresis, subclinical hyperthyroidism, subclinical hypercortisolism, precocious thelarche and pubarche and congenital bone abnormalities. CONCLUSIONS: This is the first time that the new variant c.166A > T (p.Ile56Phe) on exon 2 of GNAS gene, originated on maternal allele, has been described as probable cause of a multisystemic disorder. Although the mutation is associated with a reduced activity of the function of Gsα protein, this unusual phenotype on the contrary suggests a mild functional gain.


Assuntos
Cromograninas , Pseudo-Hipoparatireoidismo , Cromograninas/genética , Éxons , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Heterozigoto , Humanos , Mutação , Pseudo-Hipoparatireoidismo/genética
16.
Front Endocrinol (Lausanne) ; 13: 892668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992099

RESUMO

The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST2) and 5 (SST5) and regulates their expression and signaling in pituitary tumoral cells. So far, the existence and physiological relevance of SSTs homo- and hetero-dimerization in the pituitary have not been explored. Moreover, whether octreotide or pasireotide may play modulatory effects and whether FLNA may participate to this level of receptor organization have remained elusive. Here, we used a proximity ligation assay (PLA)-based approach for the in situ visualization and quantification of SST2/SST5 dimerization in rat GH3 as well as in human melanoma cells either expressing (A7) or lacking (M2) FLNA. First, we observed the formation of endogenous SST5 homo-dimers in GH3, A7, and M2 cells. Using the PLA approach combined with epitope tagging, we detected homo-dimers of human SST2 in GH3, A7, and M2 cells transiently co-expressing HA- and SNAP-tagged SST2. SST2 and SST5 can also form endogenous hetero-dimers in these cells. Interestingly, FLNA absence reduced the basal number of hetero-dimers (-36.8 ± 6.3% reduction of PLA events in M2, P < 0.05 vs. A7), and octreotide but not pasireotide promoted hetero-dimerization in both A7 and M2 (+20.0 ± 11.8% and +44.1 ± 16.3% increase of PLA events in A7 and M2, respectively, P < 0.05 vs. basal). Finally, immunofluorescence data showed that SST2 and SST5 recruitment at the plasma membrane and internalization are similarly induced by octreotide and pasireotide in GH3 and A7 cells. On the contrary, in M2 cells, octreotide failed to internalize both receptors whereas pasireotide promoted robust receptor internalization at shorter times than in A7 cells. In conclusion, we demonstrated that in GH3 cells SST2 and SST5 can form both homo- and hetero-dimers and that FLNA plays a role in the formation of SST2/SST5 hetero-dimers. Moreover, we showed that FLNA regulates SST2 and SST5 intracellular trafficking induced by octreotide and pasireotide.


Assuntos
Octreotida , Neoplasias Hipofisárias , Animais , Dimerização , Filaminas/metabolismo , Humanos , Octreotida/metabolismo , Octreotida/farmacologia , Neoplasias Hipofisárias/patologia , Ratos , Somatostatina
17.
Front Endocrinol (Lausanne) ; 13: 867822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721701

RESUMO

The mammalian target of rapamycin (mTOR) inhibitor everolimus has been shown to display antiproliferative effects on a wide spectrum of tumors. In vitro studies demonstrated that everolimus inhibited pituitary neuroendocrine tumor (PitNET) cell growth in a subset of patients. Sensitivity to everolimus is reduced by an escape mechanism that increases AKT phosphorylation (p-AKT), leading to pro-survival pathway activation. Dopamine receptor type 2 (DRD2) mediates a reduction of p-AKT in a subgroup of non-functioning PitNETs (NF-PitNETs) and in prolactin-secreting tumor cells (MMQ cells) through a ß-arrestin 2-dependent mechanism. The aim of this study was to investigate the efficacy of everolimus combined with DRD2 agonist cabergoline in reducing NF-PitNET primary cells and MMQ cell proliferation and to evaluate AKT phosphorylation and a possible role of ß-arrestin 2. We found that 9 out of 14 NF-PitNETs were resistant to everolimus, but the combined treatment with cabergoline inhibited cell proliferation in 7 out of 9 tumors (-31.4 ± 9.9%, p < 0.001 vs. basal) and reduced cyclin D3 expression. In the everolimus-unresponsive NF-PitNET group, everolimus determined a significant increase of p-AKT/total-AKT ratio (2.1-fold, p < 0.01, vs. basal) that was reverted by cabergoline cotreatment. To investigate the molecular mechanism involved, we used MMQ cells as a model of everolimus escape mechanism. Indeed everolimus did not affect MMQ cell proliferation and increased the p-AKT/total-AKT ratio (+1.53 ± 0.24-fold, p < 0.001 vs. basal), whereas cabergoline significantly reduced cell proliferation (-22.8 ± 6.8%, p < 0.001 vs. basal) and p-AKT. The combined treatment of everolimus and cabergoline induced a reduction of both cell proliferation (-34.8 ± 18%, p < 0.001 vs. basal and p < 0.05 vs. cabergoline alone) and p-AKT/total-AKT ratio (-34.5 ± 14%, p < 0.001 vs. basal and p < 0.05 vs. cabergoline alone). To test ß-arrestin 2 involvement, silencing experiments were performed in MMQ cells. Our data showed that the lack of ß-arrestin 2 prevented the everolimus and cabergoline cotreatment inhibitory effects on both p-AKT and cell proliferation. In conclusion, this study revealed that cabergoline might overcome the everolimus escape mechanism in NF-PitNETs and tumoral lactotrophs by inhibiting upstream AKT activation. The co-administration of cabergoline might improve mTOR inhibitor antitumoral activity, paving the way for a potential combined therapy in ß-arrestin 2-expressing NF-PitNETs or other PitNETs resistant to conventional treatments.


Assuntos
Cabergolina , Everolimo , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Receptores de Dopamina D2 , Serina-Treonina Quinases TOR , Cabergolina/farmacologia , Interações Medicamentosas , Everolimo/farmacologia , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , beta-Arrestina 2/metabolismo
18.
Cancers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626057

RESUMO

Somatic mutations in the ubiquitin specific peptidase 8 (USP8) gene have been associated with higher levels of somatostatin (SS) receptor subtype 5 (SSTR5) in adrenocorticotroph hormone (ACTH)-secreting pituitary neuroendocrine tumors (PitNETs). However, a correlation between the USP8 mutational status and favourable responses to pasireotide, the somatostatin multi-receptor ligand acting especially on SSTR5, has not been investigated yet. Here, we studied the impact of USP8 mutations on pasireotide responsiveness in human and murine corticotroph tumor cells. SSTR5 upregulation was observed in USP8 wild-type primary tumor cells transfected with S718del USP8 mutant. However, cell transfection with S718del USP8 and C40-USP8 mutants in in vitro sensitive cultures from USP8 wild-type tumors abolished their ability to respond to pasireotide and did not confer pasireotide responsiveness to the in vitro resistant culture. Pasireotide failed to reduce ACTH secretion in primary cells from one S718P USP8-mutated tumor but exerted a strong antisecretory effect in primary cells from one P720R USP8-mutated tumor. In agreement, AtT-20 cells transfection with USP8 mutants led to SSTR5 expression increase but pasireotide could reduce ACTH production and cyclin E expression in P720R USP8 overexpressing cells, only. In situ Proximity Ligation Assay and immunoflurescence experiments revealed that P720R USP8 mutant is still able to bind 14-3-3 proteins in AtT-20 cells, without affecting SSTR5 localization. In conclusion, P720R USP8 mutation might be considered as a molecular predictor of favourable response to pasireotide in corticotroph tumor cells.

19.
Nat Rev Endocrinol ; 17(9): 560-571, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34194011

RESUMO

The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses. Although the expression of somatostatin and dopamine receptors in cancer cells is a prerequisite for these drugs to reach a biological effect, their presence does not guarantee the success of the therapy. Successful therapy also requires the proper functioning of the machinery of signal transduction and the finely tuned regulation of receptor desensitization, internalization and intracellular trafficking. The present Review provides an updated overview of the molecular factors underlying the pharmacological resistance of pituitary tumours. The Review discusses the experimental evidence that supports a role for receptors and intracellular proteins in the function of SSTs and DRD2 and their clinical importance.


Assuntos
Adenoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias Hipofisárias/tratamento farmacológico , Adenoma/patologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Hipofisárias/patologia , Transdução de Sinais/efeitos dos fármacos
20.
Mol Cell Endocrinol ; 524: 111159, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33428965

RESUMO

Somatostatin receptor type 5 (SST5) represents the main pharmacological target in the treatment of adrenocorticotroph hormone (ACTH)-secreting tumors. However, molecular predictors of responsiveness to pasireotide require further investigation. The cytoskeleton protein filamin A (FLNA) modulates the responsiveness to somatostatin analogs (SSA) treatment in other types of pituitary tumors by regulating somatostatin receptor type 2 (SST2)/dopamine receptor type 2 (DRD2) expression and activity. Here, we aimed to test the involvement of FLNA in the modulation of SST5 response to SSA in human and murine tumor corticotrophs. Western blot analysis of human corticotropinomas showed that FLNA and SST5 correlate. Both in human primary cultures and AtT-20 cells, FLNA genetic silencing caused a decrease of receptor expression level. Moreover, pasireotide-mediated SST5 downregulation observed in AtT-20 control cells was no further detected in FLNA silenced cells. In AtT-20 cells, in situ PLA experiments revealed an increased number of SST5-FLNA complexes following pasireotide incubation. Finally, FLNA knock down abolished pasireotide-induced SST5 actions on hormone secretion, cell proliferation and apoptosis. In conclusion, FLNA is implicated in SST5 expression modulation and signaling.


Assuntos
Corticotrofos/metabolismo , Filaminas/metabolismo , Neoplasias Hipofisárias/metabolismo , Receptores de Somatostatina/metabolismo , Transdução de Sinais , Somatostatina/análogos & derivados , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Inativação Gênica , Hormônios/metabolismo , Humanos , Camundongos , Ligação Proteica , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA