Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Anal Chem ; 96(18): 6875-6880, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651263

RESUMO

Here, we present the proof-of-concept of a lateral flow assay (LFA) that is capable of detecting small-molecule targets in a noncompetitive manner by deploying a sandwich-type format based on the aptamer kissing complex (AKC) strategy. A fluorescently labeled hairpin aptamer served as the signaling agent, while a specific RNA hairpin grafted onto the strip served as the capture element. The hairpin aptamer switched from an unfolded to a folded form in the presence of the target, resulting in kissing interactions between the loops of the reporter and the capture agents. This design triggered a target-dependent fluorescent signal at the test line. The AKC-based LFA was developed for the detection of adenosine, achieving a detection limit in the micromolar range. The assay revealed the presence of the same analyte in urine. The method also proved effective with another small molecule (theophylline). We believe that the AKC-based LFA approach could overcome many of the shortcomings associated with conventional signal-off methods and competitive processes.


Assuntos
Adenosina , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Adenosina/análise , Adenosina/urina , Técnicas Biossensoriais/métodos , Humanos , Teofilina/análise , Teofilina/urina , Limite de Detecção , Corantes Fluorescentes/química
2.
Bioorg Med Chem ; 110: 117831, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39004051

RESUMO

The CD20 antigen is a key target for several diseases including lymphoma and autoimmune diseases. For over 20 years, several monoclonal antibodies were developed to treat CD20-related disorders. As many therapeutic proteins, their clinical use is however limited due to their nature with a costly biotechnological procedure and side effects such as the production of anti-drug neutralizing antibodies. Nucleic acid aptamers have some advantages over mAbs and are currently investigated for clinical use. We herein report the selection of DNA aptamer by using a peptide-based CE-SELEX (Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment) method. It was demonstrated that these aptamers bind specifically a CD20-expressing human cell line, with Kd estimated from isothermal titration calorimetry experiments in the micromolar range. This study demonstrates that the CE-SELEX is suitable as alternative method to the conventional Cell-SELEX to discover new cell-targeting compounds.


Assuntos
Antígenos CD20 , Aptâmeros de Nucleotídeos , Eletroforese Capilar , Peptídeos , Técnica de Seleção de Aptâmeros , Humanos , Antígenos CD20/metabolismo , Antígenos CD20/química , Aptâmeros de Nucleotídeos/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos/isolamento & purificação , Linhagem Celular Tumoral
3.
Anal Chem ; 94(45): 15546-15552, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36342126

RESUMO

A new analytical methodology, using capillary electrophoresis in indirect UV absorbance mode, is developed for the quantification of analytes in the absence of reference materials. The methodology allows the quantification of organic molecules and/or small ions, anionic or cationic, absorbing or not in the UV range, carrying either one or two electric charges. Two methods of data processing were compared. The first is based on the use of a dynamic simulator of electromigration, and the second uses the Kohlrausch regulating function combined with the electroneutrality equation. The experimental conditions presented in this work allow a precise quantification of anions having electrophoretic mobilities (µep) between -22.71 and -36.92 × 10-9 m2 V-1 s-1 and cations with µep between +30.59 and +63.60 × 10-9 m2 V-1 s-1 with percent relative errors lower than -5.52%. The effect of the integration errors on the reliability of the results is discussed in detail.


Assuntos
Eletricidade , Eletroforese Capilar , Reprodutibilidade dos Testes , Ânions/análise , Cátions , Eletroforese Capilar/métodos
4.
Angew Chem Int Ed Engl ; 60(22): 12346-12350, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33742515

RESUMO

We introduced an aptamer switch design that relies on the ability of post-transition/transition metal ions to trigger, through their coordination to nucleobases, substantial DNA destabilization. In the absence of molecular target, the addition of one such metal ion to usual aptamer working solutions promotes the formation of an alternative, inert DNA state. Upon exposure to the cognate compound, the equilibrium is shifted towards the competent DNA form. The switching process was preferentially activated by metal ions of intermediate base over phosphate complexation preference (i.e. Pb2+ , Cd2+ ) and operated with diversely structured DNA molecules. This very simple aptamer switch scheme was applied to the detection of small organics using the fluorescence anisotropy readout mode. We envision that the approach could be adapted to a variety of signalling methods that report on changes in the surface charge density of DNA receptors.

6.
Molecules ; 24(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634526

RESUMO

The medical staff is often powerless to treat patients affected by drug abuse or misuse and poisoning. In the case of envenomation, the treatment of choice remains horse sera administration that poses a wealth of other medical conditions and threats. Previously, we have demonstrated that DNA-based aptamers represent powerful neutralizing tools for lethal animal toxins of venomous origin. Herein, we further pursued our investigations in order to understand whether all toxin-interacting aptamers possessed equivalent potencies to neutralize αC-conotoxin PrXA in vitro and in vivo. We confirmed the high lethality in mice produced by αC-conotoxin PrXA regardless of the mode of injection and further characterized myoclonus produced by the toxin. We used high-throughput patch-clamp technology to assess the effect of αC-conotoxin PrXA on ACh-mediated responses in TE671 cells, responses that are carried by muscle-type nicotinic receptors. We show that 2 out of 4 aptamers reduce the affinity of the toxin for its receptor, most likely by interfering with the pharmacophore. In vivo, more complex responses on myoclonus and mice lethality are observed depending on the type of aptamer and mode of administration (concomitant or differed). Concomitant administration always works better than differed administration indicating the stability of the complex in vivo. The most remarkable conclusion is that an aptamer that has no or a limited efficacy in vitro may nevertheless be functional in vivo probably owing to an impact on the biodistribution or pharmacokinetics of the toxin in vivo. Overall, the results highlight that a blind selection of aptamers against toxins leads to efficient neutralizing compounds in vivo regardless of the mode of action. This opens the door to the use of aptamer mixtures as substitutes to horse sera for the neutralization of life-threatening animal venoms, an important WHO concern in tropical areas.


Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Conotoxinas/toxicidade , Mioclonia/prevenção & controle , Animais , Aptâmeros de Nucleotídeos/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Mioclonia/mortalidade , Receptores Nicotínicos/metabolismo , Técnica de Seleção de Aptâmeros
7.
Anal Chem ; 90(7): 4236-4248, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29513518

RESUMO

Fluorescence polarization/anisotropy is a very popular technique that is widely used in homogeneous-phase immunoassays for the small molecule quantification. In the present Feature, we discuss how the potential of this signaling approach considerably expanded during the last 2 decades through the implementation of a myriad of original transducing strategies that use functional nucleic acid recognition elements as a promising alternative to antibodies.


Assuntos
Polarização de Fluorescência , Ácidos Nucleicos/metabolismo , Transdução de Sinais , Anisotropia
8.
Anal Chem ; 90(4): 2493-2500, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29359557

RESUMO

The inline coupling of the field-amplified sample injection (FASI) to Taylor dispersion analysis (TDA) was used to characterize low-UV absorbing carboxylated silica nanoparticles (cNPs). The hydrodynamic diameters (Dh) were measured by using a commercial capillary electrophoresis instrument. The proposed methodology did not require any complicated instruments or chromophoric dye to increase the detection sensitivity. A practical method based on a half-Gaussian fitting was proposed for the data processing. The results obtained by this method were compared with those derived from dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. From these results, it appeared that the size derived by TDA is in excellent agreement with those measured by DLS and TEM, as demonstrated by stable nanoparticles with narrow size distributions. Intermediate precision relative standard deviations less than 5% were obtained by FASI-TDA. The effect of the FASI-induced cNP peak dispersion on the reliability of the results was discussed in detail.

9.
Nucleic Acids Res ; 44(9): 4450-9, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27067541

RESUMO

Loop-loop (also known as kissing) interactions between RNA hairpins are involved in several mechanisms in both prokaryotes and eukaryotes such as the regulation of the plasmid copy number or the dimerization of retroviral genomes. The stability of kissing complexes relies on loop parameters (base composition, sequence and size) and base combination at the loop-loop helix - stem junctions. In order to identify kissing partners that could be used as regulatory elements or building blocks of RNA scaffolds, we analysed a pool of 5.2 × 10(6) RNA hairpins with randomized loops. We identified more than 50 pairs of kissing RNA hairpins. Two kissing motifs, 5'CCNY and 5'RYRY, generate highly stable complexes with KDs in the low nanomolar range. Such motifs were introduced in the apical loop of hairpin aptamers that switch between unfolded and folded state upon binding to their cognate target molecule, hence their name aptaswitch. The aptaswitch-ligand complex is specifically recognized by a second RNA hairpin named aptakiss through loop-loop interaction. Taking advantage of our kissing motif repertoire we engineered aptaswitch-aptakiss modules for purine derivatives, namely adenosine, GTP and theophylline and demonstrated that these molecules can be specifically and simultaneously detected by surface plasmon resonance or by fluorescence anisotropy.


Assuntos
Aptâmeros de Nucleotídeos/química , RNA/química , Adenosina/química , Pareamento de Bases , Polarização de Fluorescência , Guanosina Trifosfato/química , Sequências Repetidas Invertidas , Cinética , Ligantes , Motivos de Nucleotídeos , Ressonância de Plasmônio de Superfície
10.
Electrophoresis ; 38(9-10): 1383-1390, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28256731

RESUMO

We recently reported that a great variety of DNA oligonucleotides (ONs) used as chiral selectors in partial-filling capillary electrophoresis (CE) exhibited interesting enantioresolution properties toward low-affinity DNA binders. Herein, the sequence prerequisites of ONs for the CE enantioseparation process were studied. First, the chiral resolution properties of a series of homopolymeric sequences (Poly-dT) of different lengths (from 5 to 60-mer) were investigated. It was shown that the size increase-dependent random coil-like conformation of Poly-dT favorably acted on the apparent selectivity and resolution. The base-unpairing state constituted also an important factor in the chiral resolution ability of ONs as the switch from the single-stranded to double-stranded structure was responsible for a significant decrease in the analyte selectivity range. Finally, the chemical diversity enhanced the enantioresolution ability of single-stranded ONs. The present work could lay the foundation for the design of performant ON chiral selectors for the CE separation of weak DNA binder enantiomers.


Assuntos
Eletroforese Capilar/métodos , Oligonucleotídeos/química , Oligonucleotídeos/análise , Oligonucleotídeos/isolamento & purificação , Poli T/análise , Poli T/química , Poli T/isolamento & purificação , Estereoisomerismo
11.
Langmuir ; 33(44): 12785-12792, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29035542

RESUMO

The detection of small molecules impacts various fields; however, their small size and low concentration are usually the cause of limitations in their detection. Thus, the need for biosensors with appropriate probes and signal amplification strategies is required. Aptamers are appropriate probes selected specifically against small targets such as adenosine. The possibility to split aptamers in parts led to original amplification strategies based on sandwich assays. By combining the self-assembling of oligonucleotide dimers with split-aptamer dangling ends and a surface plasmon resonance imaging technique, we developed an original amplification approach based on linear chain formation in the presence of the adenosine target. In this article, on the basis of sequence engineering, we analyzed its performance and the effect of the probe grafting density on the length of the chains formed at the surface of the biosensor.


Assuntos
Adenosina/química , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Polímeros , Ressonância de Plasmônio de Superfície
12.
Methods ; 97: 69-74, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26455538

RESUMO

This study describes for the first time the feasibility of using peptide nucleic acids (PNAs) as an alternative to the DNA probes in structure-switching aptamer fluorescence polarisation assays. The effects of experimental parameters such as the length of the PNA strand, the nature of dye and the buffer conditions on the assay performances are first explored using two different methodologies based on the competition between the PNA/aptamer hydribridisation and the target/aptamer complexation. D-ATP can be detected from 1 to 25 µM in a linear range and a detection limit (LOD) of 3 µM can be reached. For this target, this lowers by a factor >5 the LOD reported with conventional DNA-based fluorescent structure switching aptamer-based assays and by a factor 3 the LOD observed with non-competitive fluorescent sensing platform indicating the usefulness of the PNA-based approach.


Assuntos
Trifosfato de Adenosina/análise , Técnicas Biossensoriais , Ácidos Nucleicos Peptídicos/química , Aptâmeros de Nucleotídeos/química , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Limite de Detecção
13.
Anal Chem ; 88(5): 2570-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26832823

RESUMO

We report herein a novel sandwich-type enzyme-linked assay for the "signal-on" colorimetric detection of small molecules. The approach (referred to as enzyme-linked aptamer kissing complex assay (ELAKCA)) relied on the kissing complex-based recognition of the target-bound hairpin aptamer conformational state by a specific RNA hairpin probe. The aptamer was covalently immobilized on a microplate well surface to act as target capture element. Upon small analyte addition, the folded aptamer was able to bind to the biotinylated RNA hairpin module through loop-loop interaction. The formed ternary complex was then revealed by the introduction of the streptavidin-horseradish peroxidase conjugate that catalytically converted the 3,3',5,5'-tetramethylbenzidine substrate into a colorimetric product. ELAKCA was successfully designed for two different systems allowing detecting the adenosine and theophylline molecules. The potential practical applicability in terms of biological sample analysis (human plasma), temporal stability, and reusability was also reported. Owing to the variety of both hairpin functional nucleic acids, kissing motifs, and enzyme-based signaling systems, ELAKCA opens up new prospects for developing small molecule sensing platforms of wide applications.


Assuntos
Ensaios Enzimáticos/métodos , Adenosina/sangue , Aptâmeros de Nucleotídeos/química , Benzidinas/química , Compostos Cromogênicos/química , Colorimetria , Ensaios Enzimáticos/instrumentação , Peroxidase do Rábano Silvestre/química , Humanos , Estreptavidina/química , Teofilina/sangue
14.
Anal Chem ; 88(23): 11963-11971, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934108

RESUMO

Nucleic acid aptamers are involved in a broad field of applications ranging from therapeutics to analytics. Deciphering the binding mechanisms between aptamers and small ligands is therefore crucial to improve and optimize existing applications and to develop new ones. Particularly interesting is the enantiospecific binding mechanism involving small molecules with nonprestructured aptamers. One archetypal example is the chiral binding between l-tyrosinamide and its 49-mer aptamer for which neither structural nor mechanistic information is available. In the present work, we have taken advantage of a multiple analytical characterization strategy (i.e., using electroanalytical techniques such as kinetic rotating droplet electrochemistry, fluorescence polarization, isothermal titration calorimetry, and quartz crystal microbalance) for interpreting the nature of binding process. Screening of the binding thermodynamics and kinetics with a wide range of aptamer sequences revealed the lack of symmetry between the two ends of the 23-mer minimal binding sequence, showing an unprecedented influence of the 5' aptamer modification on the bimolecular binding rate constant kon and no significant effect on the dissociation rate constant koff. The results we have obtained lead us to conclude that the enantiospecific binding reaction occurs through an induced-fit mechanism, wherein the ligand promotes a primary nucleation binding step near the 5'-end of the aptamer followed by a directional folding of the aptamer around its target from 5'-end to 3'-end. Functionalization of the 5'-end position by a chemical label, a polydA tail, a protein, or a surface influences the kinetic/thermodynamic constants up to 2 orders of magnitude in the extreme case of a surface immobilized aptamer, while significantly weaker effect is observed for a 3'-end modification. The reason is that steric hindrance must be overcome to nucleate the binding complex in the presence of a modification near the nucleation site.


Assuntos
Aptâmeros de Nucleotídeos/química , Calorimetria , Técnicas Eletroquímicas , Polarização de Fluorescência , Técnicas de Microbalança de Cristal de Quartzo , Bibliotecas de Moléculas Pequenas/química , Sequência de Bases , Sítios de Ligação , Cinética , Ligantes , Termodinâmica
15.
Anal Chem ; 87(11): 5491-5, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25978071

RESUMO

Herein, we studied the chiral resolution properties of a repertoire of arbitrarily chosen DNA oligonucleotides (ON). Ten oligonucleotidic sequences characterized by diverse base compositions, sizes, and structural features, ranging from secondary structure-free homo-oligonucleotides to duplex, hairpin, and three-way junction architectures, were investigated as potential chiral selectors. Their enantioselective features were assessed by using ONs as running buffer additives in partial-filling capillary electrophoresis. It was shown that all the screened sequences displayed enantiodiscrimination capabilities toward small aromatic compounds. Under (sub)millimolar DNA concentration conditions, the combination of only three oligonucleotidic sequences provided the chiral resolution of around 20 racemates, including drugs, illegal drugs, amino-acids, and nucleosides. This work represents the first demonstration of such analyte selectivity spectrum for nucleic acid-based chiral separation tools.


Assuntos
Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , DNA/química , Oligonucleotídeos/química , Estrutura Molecular , Estereoisomerismo
16.
Anal Chem ; 87(6): 3139-43, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25738735

RESUMO

We describe herein a novel approach for the fluorescent detection of small molecules using a sandwich-type aptamer strategy based on a signaling macrocyclic host-dye system. One split adenosine aptamer fragment was 5'-conjugated to a ß-cylodextrin (CD) molecule while the other nucleic acid fragment was labeled at the 3'-end by a dansyl molecule prone to be included into the macrocycle. The presence of the small target analyte governed the assembly of the two fragments, bringing the dye molecule and its specific receptor in close proximity and promoting the inclusion interaction. Upon the inclusion complex formation, the microenvironment of dansyl was modified in such a way that the fluorescent intensity increased. Concomitantly, this supplementary interaction at the aptamer extremities induced stabilizing effects on the ternary complex. We next proposed a bivalent signaling design where the two extremities of one split aptamer fragment were conjugated to the ß-CD molecule while those of the other fragment were tagged by the dansyl dye. The dual reporting dye inclusion promoted an improvement of both the signal-to-background change and the assay sensitivity. Owing to the vast diversity of responsive host-macrocycle systems available, this aptasensor strategy has potential to be extended to the multiplexed analysis and to other kinds of transducers (such as electrochemical).


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Compostos Macrocíclicos/química , Aptâmeros de Nucleotídeos/metabolismo , Compostos de Dansil/química , beta-Ciclodextrinas/química
17.
Chemistry ; 21(44): 15740-8, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26356596

RESUMO

Aptamers constitute an emerging class of molecules designed and selected to recognize any given target that ranges from small compounds to large biomolecules, and even cells. However, the underlying physicochemical principles that govern the ligand-binding process still have to be clarified. A major issue when dealing with short oligonucleotides is their intrinsic flexibility that renders their active conformation highly sensitive to experimental conditions. To overcome this problem and determine the best experimental parameters, an approach based on the design-of-experiments methodology has been developed. Here, the focus is on DNA aptamers that possess high specificity and affinity for small molecules, L-tyrosinamide, and adenosine monophosphate. Factors such as buffer, pH value, ionic strength, Mg(2+) -ion concentration, and ligand/aptamer ratio have been considered to find the optimal experimental conditions. It was then possible to gain new insight into the conformational features of the two ligands by using ligand-observed NMR spectroscopic techniques and molecular mechanics.


Assuntos
Monofosfato de Adenosina/química , Aptâmeros de Nucleotídeos/química , Tirosina/análogos & derivados , Aptâmeros de Nucleotídeos/metabolismo , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Tirosina/química
19.
Anal Bioanal Chem ; 407(21): 6515-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26077749

RESUMO

We very recently reported a novel aptamer biosensing concept based on a dual recognition mechanism originating from the small target-induced formation of a functional nucleic acid assembly. This assembly is constituted of a hairpin aptamer (named aptaswitch) for which the apical loop of the parent aptamer is substituted by a short RNA sequence prone to loop-loop interactions. It can switch between folded and unfolded states in the presence and in the absence of targets, respectively. The apical loop of the folded aptaswitch is then recognized by a second hairpin (called aptakiss), forming a kissing complex that signals the presence of the target. In the present work, we focus on the design improvement of this biosensing platform by using a previously described adenosine-adenoswitch couple as a model system and a fluorophore-labeled aptakiss as a reporting probe for fluorescence anisotropy (FA) detection. In the first step, the initially described adenoswitch was re-engineered to optimally convert the unfolded structure into the active stem-loop form upon adenosine binding. To further improve the assay performance, a blocking DNA oligonucleotide of the adenoswitch sequence was subsequently introduced into the assay scheme. This blocking strategy led to a significant increase in the FA response by reducing the background signal generated by the undesired binding of the free adenoswitch to the aptakiss probe. We obtained a detection limit which is fivefold lower than that observed with the previously reported kissing complex-based sensor. Finally, the optimized biosensing platform was successfully applied under biologically relevant conditions, i.e., diluted human serum, suggesting the potential practical applicability of the kissing sensing approach.


Assuntos
Adenosina/análise , Técnicas Biossensoriais
20.
Anal Chem ; 86(9): 4233-40, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24716781

RESUMO

This novel, multi small-analyte sensing strategy is the result of combining the target-induced aptamer enzymatic protection approach with the CGE-LIF (capillary gel electrophoresis with laser-induced fluorescence) technique. The implemented assay principle is based on an analysis of the phosphodiesterase I (PDE I)-mediated size variation of a fluorescein-labeled aptamer (FApt), the enzyme catalyzing the removal of nucleotides from DNA in the 3' to 5' direction. In the absence of the target, the unfolded aptamer was enzymatically cleaved into short DNA fragments. Upon target binding, the DNA substrate was partially protected against enzymatic hydrolysis. The amount of bound aptamer remaining after the exonuclease reaction was proportional to the concentration of the target. The CGE technique, which was used to determine the separation of FApt species from DNA digested products, permitted the quantification of adenosine (A), ochratoxin A (O), and tyrosinamide (T) under the same optimized enzymatic conditions. This assay strategy was subsequently applied to the simultaneous detection of A, O, and T in a single capillary under buffered conditions using corresponding FApt probes of different lengths (23, 36, and 49 nucleotides, respectively). Additionally, the detection of these three small molecules was successfully achieved in a complex medium (diluted, heat-treated human serum) showing a good recovery. It is worth noting that the multiplexed analysis was accomplished for targets with different charge states by using aptamers possessing various structural features. This sensing platform constitutes a rationalized and reliable approach with an expanded potential for a high-throughput determination of small analytes in a single capillary.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroforese Capilar/métodos , Sequência de Bases , Primers do DNA , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA