Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 21(5): e3001665, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37252939

RESUMO

Epithelial repair relies on the activation of stress signaling pathways to coordinate tissue repair. Their deregulation is implicated in chronic wound and cancer pathologies. Using TNF-α/Eiger-mediated inflammatory damage to Drosophila imaginal discs, we investigate how spatial patterns of signaling pathways and repair behaviors arise. We find that Eiger expression, which drives JNK/AP-1 signaling, transiently arrests proliferation of cells in the wound center and is associated with activation of a senescence program. This includes production of the mitogenic ligands of the Upd family, which allows JNK/AP-1-signaling cells to act as paracrine organizers of regeneration. Surprisingly, JNK/AP-1 cell-autonomously suppress activation of Upd signaling via Ptp61F and Socs36E, both negative regulators of JAK/STAT signaling. As mitogenic JAK/STAT signaling is suppressed in JNK/AP-1-signaling cells at the center of tissue damage, compensatory proliferation occurs by paracrine activation of JAK/STAT in the wound periphery. Mathematical modelling suggests that cell-autonomous mutual repression between JNK/AP-1 and JAK/STAT is at the core of a regulatory network essential to spatially separate JNK/AP-1 and JAK/STAT signaling into bistable spatial domains associated with distinct cellular tasks. Such spatial stratification is essential for proper tissue repair, as coactivation of JNK/AP-1 and JAK/STAT in the same cells creates conflicting signals for cell cycle progression, leading to excess apoptosis of senescently stalled JNK/AP-1-signaling cells that organize the spatial field. Finally, we demonstrate that bistable separation of JNK/AP-1 and JAK/STAT drives bistable separation of senescent signaling and proliferative behaviors not only upon tissue damage, but also in RasV12, scrib tumors. Revealing this previously uncharacterized regulatory network between JNK/AP-1, JAK/STAT, and associated cell behaviors has important implications for our conceptual understanding of tissue repair, chronic wound pathologies, and tumor microenvironments.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição STAT/metabolismo , Drosophila/metabolismo , Proliferação de Células , Janus Quinases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA