Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Pathog ; 19(5): e1011400, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216411

RESUMO

Neisseria gonorrhoeae is an exclusively human pathogen able to evade the host immune system through multiple mechanisms. Gonococci accumulate a large portion of phosphate moieties as polyphosphate (polyP) on the exterior of the cell. Although its polyanionic nature has suggested that it may form a protective shield on the cell surface, its role remains controversial. Taking advantage of a recombinant His-tagged polyP-binding protein, the presence of a polyP pseudo-capsule in gonococcus was demonstrated. Interestingly, the polyP pseudo-capsule was found to be present in specific strains only. To investigate its putative role in host immune evasion mechanisms, such as resistance to serum bactericidal activity, antimicrobial peptides and phagocytosis, the enzymes involved in polyP metabolism were genetically deleted, generating mutants with altered polyP external content. The mutants with lower polyP content on their surface compared to the wild-type strains, became sensitive to complement-mediated killing in presence of normal human serum. Conversely, naturally serum sensitive strains that did not display a significant polyP pseudo-capsule became resistant to complement in the presence of exogenous polyP. The presence of polyP pseudo-capsule was also critical in the protection from antibacterial activity of cationic antimicrobial peptide, such as cathelicidin LL-37. Results showed that the minimum bactericidal concentration was lower in strains lacking polyP than in those harboring the pseudo-capsule. Data referring to phagocytic killing resistance, assessed by using neutrophil-like cells, showed a significant decrease in viability of mutants lacking polyP on their cell surface in comparison to the wild-type strain. The addition of exogenous polyP overturned the killing phenotype of sensitive strains suggesting that gonococcus could exploit environmental polyP to survive to complement-mediated, cathelicidin and intracellular killing. Taken together, data presented here indicate an essential role of the polyP pseudo-capsule in the gonococcal pathogenesis, opening new perspective on gonococcal biology and more effective treatments.


Assuntos
Gonorreia , Polifosfatos , Humanos , Gonorreia/microbiologia , Neisseria gonorrhoeae/genética , Neutrófilos , Fagocitose , Proteínas do Sistema Complemento/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256189

RESUMO

Shigellosis, an acute gastroenteritis infection caused by Shigella species, remains a public health burden in developing countries. Recently, many outbreaks due to Shigella sonnei multidrug-resistant strains have been reported in high-income countries, and the lack of an effective vaccine represents a major hurdle to counteract this bacterial pathogen. Vaccine candidates against Shigella sonnei are under clinical development, including a Generalized Modules for Membrane Antigens (GMMA)-based vaccine. The mechanisms by which GMMA-based vaccines interact and activate human immune cells remain elusive. Our previous study provided the first evidence that both adaptive and innate immune cells are targeted and functionally shaped by the GMMA-based vaccine. Here, flow cytometry and confocal microscopy analysis allowed us to identify monocytes as the main target population interacting with the S. sonnei 1790-GMMA vaccine on human peripheral blood. In addition, transcriptomic analysis of this cell population revealed a molecular signature induced by 1790-GMMA mostly correlated with the inflammatory response and cytokine-induced processes. This also impacts the expression of genes associated with macrophages' differentiation and T cell regulation, suggesting a dual function for this vaccine platform both as an antigen carrier and as a regulator of immune cell activation and differentiation.


Assuntos
Antígenos de Grupos Sanguíneos , Gastroenterite , Metilmetacrilatos , Vacinas , Humanos , Monócitos , Shigella sonnei/genética , Antígenos de Bactérias/genética
3.
J Immunol ; 194(4): 1717-25, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25589069

RESUMO

Ag retention within lymph nodes (LNs) upon vaccination is critical for the development of adaptive immune responses, because it facilitates the encounter of the Ag with cognate lymphocytes. During a secondary exposure of the immune system to an Ag, immune complexes (ICs) that contain the unprocessed Ag are captured by subcapsular sinus macrophages and are transferred onto follicular dendritic cells, where they persist for weeks, facilitating Ag presentation to cognate memory B cells. The impact of adjuvants on Ag retention within the draining LNs is unknown. In this article, we provide the first evidence, to our knowledge, that the oil-in-water emulsion adjuvant MF59 localizes in subcapsular sinus and medullary macrophage compartments of mouse draining LNs, where it persists for at least 2 wk. In addition, we demonstrate that MF59 promotes accumulation of the unprocessed Ag within these LN compartments and facilitates the consequent deposition of the IC-trapped Ag onto activated follicular dendritic cells. These findings correlate with the ability of MF59 to boost germinal center generation and Ag-specific Ab titers. Our data suggest that the adjuvant effect of MF59 is, at least in part, due to an enhancement of IC-bound Ag retention within the LN and offer insights to improve the efficacy of new vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Apresentação de Antígeno/imunologia , Células Dendríticas Foliculares/imunologia , Linfonodos/imunologia , Esqualeno/imunologia , Animais , Antígenos/imunologia , Citometria de Fluxo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Polissorbatos/farmacologia , Esqualeno/farmacologia
4.
Mol Cell Proteomics ; 14(8): 2138-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26018414

RESUMO

Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.


Assuntos
Proteínas de Bactérias/metabolismo , Lipoproteínas/metabolismo , Microdomínios da Membrana/metabolismo , Streptococcus pyogenes/metabolismo , Meios de Cultura , Células HEK293 , Humanos , Microdomínios da Membrana/efeitos dos fármacos , Peso Molecular , Mutação/genética , Penicilinas/farmacologia , Software , Streptococcus pyogenes/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo
5.
J Infect Dis ; 213(4): 516-22, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26401026

RESUMO

The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells. Screening for anti-RrgA monoclonal antibodies specifically affecting the adhesive capacity of S. pneumoniae led to the identification of the monoclonal 11B9/61 antibody, which greatly reduced pilus-dependent cell contact. Proteomic-based epitope mapping of 11B9/61 monoclonal antibody revealed a well-exposed epitope on the D2 domain of RrgA as the target of this functional antibody. The data presented here confirm the importance of pilus I for S. pneumoniae pathogenesis and the potential use of antipilus antibodies to prevent bacterial colonization.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Aderência Bacteriana/efeitos dos fármacos , Células Epiteliais/microbiologia , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/imunologia , Streptococcus pneumoniae/imunologia , Linhagem Celular , Mapeamento de Epitopos , Humanos , Fatores de Virulência/imunologia
6.
PLoS Pathog ; 10(5): e1004124, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24809621

RESUMO

SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species.


Assuntos
Anticorpos Antibacterianos/farmacologia , Formação de Anticorpos , Infecções por Escherichia coli , Proteínas de Escherichia coli/imunologia , Polissacarídeo-Liases/antagonistas & inibidores , Fatores de Virulência/imunologia , Animais , Animais não Endogâmicos , Anticorpos Antibacterianos/metabolismo , Células Cultivadas , Escherichia coli Enteropatogênica/crescimento & desenvolvimento , Escherichia coli Enteropatogênica/imunologia , Escherichia coli Enteropatogênica/metabolismo , Ativação Enzimática/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Feminino , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos CBA , Polissacarídeo-Liases/imunologia , Polissacarídeo-Liases/metabolismo , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/metabolismo
7.
Bioconjug Chem ; 26(8): 1839-49, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26230938

RESUMO

We have recently described a method for tyrosine-ligation of complex glycans that was proven efficient for the site selective coupling of GBS capsular polysaccharides (PSs). Herein, we explored the effect of conjugation of type V polysaccharide onto predetermined lysine or tyrosine residues of the GBS67 pilus protein with the dual role of T-cell carrier for the PS and antigen. For the preparation of a conjugate at predetermined lysine residues of the protein, we investigated a two-step procedure based on microbial Transglutaminase (mTGase) catalyzed insertion of a tag bearing an azide for following copper-free strain-promoted azide-alkyne [3 + 2] cycloaddition (SPAAC) with the polysaccharide. Two glycoconjugates were obtained by tyrosine-ligation through the known SPAAC and a novel thiol-maleimide addition based approach. Controls were prepared by random conjugation of PSV to GBS67 and CRM197, a carrier protein present in many commercial vaccines. Immunological evaluation in mice showed that all the site-directed constructs were able to induce good levels of anti-polysaccharide and anti-protein antibodies inducing osponophagocytic killing of strains expressing individually PSV or GBS67. GBS67 randomly conjugated to PSV showed carrier properties similar to CRM197. Among the tested site-directed conjugates, tyrosine-directed ligation and thiol-malemide addition was elected as the best combination to ensure production of anti-polysaccharide and anti-protein functional antibodies (in vitro opsonophagocytic killing titers) comparable to the controls made by random conjugation, while avoiding anti-linker antibodies. Our findings demonstrate that (i) mTGase based conjugation at lysine residues is an alternative approach for the synthesis of large capsular polysaccharide-protein conjugates; (ii) GBS67 can be used with the dual role of antigen and carrier for PSV; and (iii) thiol-maleimide addition in combination with tyrosine-ligation ensures the production of anti-polysaccharide and anti-protein functional antibodies while maintaining low levels of anti-linker antibodies. Site-specific conjugation methods aid in defining conjugation site and chemistry in carbohydrate-protein conjugates.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/farmacologia , Glicoconjugados/farmacologia , Polissacarídeos/imunologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus/imunologia , Vacinas Conjugadas/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Vacinas Bacterianas/imunologia , Sequência de Carboidratos , Ensaio de Imunoadsorção Enzimática , Feminino , Glicoconjugados/imunologia , Imunização , Camundongos , Dados de Sequência Molecular , Polissacarídeos/química , Infecções Estreptocócicas/imunologia , Tirosina/química , Tirosina/imunologia , Vacinas Conjugadas/imunologia
8.
Infect Immun ; 82(10): 4144-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25047846

RESUMO

The opportunistic pathogen Staphylococcus aureus is one of the major causes of health care-associated infections. S. aureus is primarily an extracellular pathogen, but it was recently reported to invade and replicate in several host cell types. The ability of S. aureus to persist within cells has been implicated in resistance to antimicrobials and recurrent infections. However, few staphylococcal proteins that mediate intracellular survival have been identified. Here we examine if EsxA and EsxB, substrates of the ESAT-6-like secretion system (Ess), are important during intracellular S. aureus infection. The Esx proteins are required for staphylococcal virulence, but their functions during infection are unclear. While isogenic S. aureus esxA and esxB mutants were not defective for epithelial cell invasion in vitro, a significant increase in early/late apoptosis was observed in esxA mutant-infected cells compared to wild-type-infected cells. Impeding secretion of EsxA by deleting C-terminal residues of the protein also resulted in a significant increase of epithelial cell apoptosis. Furthermore, cells transfected with esxA showed an increased protection from apoptotic cell death. A double mutant lacking both EsxA and EsxB also induced increased apoptosis but, remarkably, was unable to escape from cells as efficiently as the single mutants or the wild type. Thus, using in vitro models of intracellular staphylococcal infection, we demonstrate that EsxA interferes with host cell apoptotic pathways and, together with EsxB, mediates the release of S. aureus from the host cell.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/fisiologia , Interações Hospedeiro-Patógeno , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular , Deleção de Genes , Humanos , Staphylococcus aureus/genética , Virulência , Fatores de Virulência/genética
9.
Infect Immun ; 82(7): 2890-901, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24778116

RESUMO

Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein).


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/imunologia , Streptococcus pyogenes/metabolismo , Antígenos de Bactérias , Proteínas de Bactérias/genética , Linhagem Celular , Clonagem Molecular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/microbiologia , Deleção de Genes , Humanos , Lactococcus lactis/metabolismo , Ligação Proteica , Streptococcus pyogenes/citologia , Streptococcus pyogenes/genética
10.
Appl Environ Microbiol ; 80(7): 2176-85, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487536

RESUMO

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.


Assuntos
Biofilmes/crescimento & desenvolvimento , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/fisiologia , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Endopeptidase K/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Recém-Nascido , Programas de Rastreamento/métodos , Gravidez , Proteólise , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/isolamento & purificação
11.
Mol Cell Proteomics ; 11(4): M111.015206, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22199230

RESUMO

Very few studies have so far been dedicated to the systematic analysis of protein interactions occurring between surface and/or secreted proteins in bacteria. Such interactions are expected to play pivotal biological roles that deserve investigation. Taking advantage of the availability of a detailed map of surface and secreted proteins in Streptococcus pyogenes (group A Streptococcus (GAS)), we used protein array technology to define the "surface interactome" in this important human pathogen. Eighty-three proteins were spotted on glass slides in high density format, and each of the spotted proteins was probed for its capacity to interact with any of the immobilized proteins. A total of 146 interactions were identified, 25 of which classified as "reciprocal," namely, interactions that occur irrespective of which of the two partners was immobilized on the chip or in solution. Several of these interactions were validated by surface plasmon resonance and supported by confocal microscopy analysis of whole bacterial cells. By this approach, a number of interesting interactions have been discovered, including those occurring between OppA, DppA, PrsA, and TlpA, proteins known to be involved in protein folding and transport. These proteins, all localizing at the septum, might be part, together with HtrA, of the recently described ExPortal complex of GAS. Furthermore, SpeI was found to strongly interact with the metal transporters AdcA and Lmb. Because SpeI strictly requires zinc to exert its function, this finding provides evidence on how this superantigen, a major player in GAS pathogenesis, can acquire the metal in the host environment, where it is largely sequestered by carrier proteins. We believe that the approach proposed herein can lead to a deeper knowledge of the mechanisms underlying bacterial invasion, colonization, and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus pyogenes/metabolismo , Cloretos/farmacologia , Análise Serial de Proteínas , Ligação Proteica/efeitos dos fármacos , Compostos de Zinco/farmacologia
12.
Front Cell Infect Microbiol ; 14: 1397940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751999

RESUMO

Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.


Assuntos
Biofilmes , Haemophilus influenzae , Moraxella catarrhalis , Infecções por Moraxellaceae , Moraxella catarrhalis/fisiologia , Humanos , Haemophilus influenzae/fisiologia , Haemophilus influenzae/patogenicidade , Biofilmes/crescimento & desenvolvimento , Infecções por Moraxellaceae/microbiologia , Infecção Persistente/microbiologia , Interações Hospedeiro-Patógeno , Infecções por Haemophilus/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Modelos Biológicos , Infecções Respiratórias/microbiologia , Células Epiteliais/microbiologia
13.
J Infect Dis ; 206(6): 924-31, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22829646

RESUMO

By sequence analysis of available group B streptococcus (GBS) genomes, we discovered a conserved putative operon involved in the catabolism of sialic acid, containing a tripartite transporter formed by two integral membrane components and a sugar-binding unit, named SAL0039. Expression analysis in the presence of different substrates revealed that SAL0039 was specifically upregulated by the presence of sialic acid and downregulated when bacteria were grown in human blood or in the presence of a high concentration of glucose. The role of SAL0039 in sugar transport was supported by the inability of the sal0039 deletion mutant strain to import exogenous sialic acid and to grow in semidefined medium supplemented with this sugar. Furthermore, in vivo evidence showed that the presence of exogenous sialic acid significantly increased the capacity of GBS to infect mice at the mucosal level. These findings suggest that transport of sialic acid may also contribute to GBS infections.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/isolamento & purificação , Animais , Carga Bacteriana , Proteínas de Bactérias/genética , Transporte Biológico , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/microbiologia , Óperon , Sialiltransferases/genética , Sialiltransferases/metabolismo , Organismos Livres de Patógenos Específicos
14.
J Infect Dis ; 206(7): 1041-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22829645

RESUMO

Iron availability plays an essential role in staphylococcal pathogenesis. We selected FhuD2, a lipoprotein involved in iron-hydroxamate uptake, as a novel vaccine candidate against Staphylococcus aureus. Unprecedented for staphylococcal lipoproteins, the protein was demonstrated to have a discrete, punctate localization on the bacterial surface. FhuD2 vaccination generated protective immunity against diverse clinical S. aureus isolates in murine infection models. Protection appeared to be associated with functional antibodies that were shown to mediate opsonophagocytosis, to be effective in passive transfer experiments, and to potentially block FhuD2-mediated siderophore uptake. Furthermore, the protein was found to be up-regulated in infected tissues and was required for staphylococcal dissemination and abscess formation. Herein we show that the staphylococcal iron-hydroxamate uptake system is important in invasive infection and functions as an efficacious vaccine target.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/metabolismo , Vacinação , Abscesso/imunologia , Abscesso/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Compostos Férricos/metabolismo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Células HL-60 , Humanos , Ácidos Hidroxâmicos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Dados de Sequência Molecular , Transporte Proteico , Coelhos , Sepse/imunologia , Sepse/prevenção & controle , Infecções Estafilocócicas/imunologia , Vacinas Antiestafilocócicas/administração & dosagem , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia
15.
Cells ; 12(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371104

RESUMO

Escherichia coli is a versatile commensal species of the animal gut that can also be a pathogen able to cause intestinal and extraintestinal infections. The plasticity of its genome has led to the evolution of pathogenic strains, which represent a threat to global health. Additionally, E. coli strains are major drivers of antibiotic resistance, highlighting the urgent need for new treatment and prevention measures. The antigenic and structural heterogeneity of enterohaemorrhagic E. coli colonisation factors has limited their use for the development of effective and cross-protective vaccines. However, the emergence of new strains that express virulence factors deriving from different E. coli diarrhoeagenic pathotypes suggests that a vaccine targeting conserved proteins could be a more effective approach. In this study, we conducted proteomics analysis and functional protein characterisation to identify a group of proteins potentially involved in the adhesion of E. coli O157:H7 to the extracellular matrix and intestinal epithelial cells. Among them, OmpA has been identified as a highly conserved and immunogenic antigen, playing a significant role in the adhesion phenotype of E. coli O157:H7 and in bacterial aggregation. Furthermore, antibodies raised against recombinant OmpA effectively reduced the adhesion of E. coli O157:H7 to intestinal epithelial cells. The present work highlights the role of OmpA as a potent antigen for the development of a vaccine against intestinal pathogenic E. coli.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Animais , Escherichia coli O157/genética , Proteínas de Transporte , Proteômica , Proteínas de Escherichia coli/genética , Colágeno
16.
JACS Au ; 2(7): 1724-1735, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911445

RESUMO

Group B Streptococcus (GBS) is a Gram-positive bacterium and the most common cause of neonatal blood and brain infections. At least 10 different serotypes exist, that are characterized by their different capsular polysaccharides. The Group B carbohydrate (GBC) is shared by all serotypes and therefore attractive be used in a glycoconjugate vaccine. The GBC is a highly complex multiantennary structure, composed of rhamnose rich oligosaccharides interspaced with glucitol phosphates. We here report the development of a convergent approach to assemble a pentamer, octamer, and tridecamer fragment of the termini of the antennae. Phosphoramidite chemistry was used to fuse the pentamer and octamer fragments to deliver the 13-mer GBC oligosaccharide. Nuclear magnetic resonance spectroscopy of the generated fragments confirmed the structures of the naturally occurring polysaccharide. The fragments were used to generate model glycoconjugate vaccine by coupling with CRM197. Immunization of mice delivered sera that was shown to be capable of recognizing different GBS strains. The antibodies raised using the 13-mer conjugate were shown to recognize the bacteria best and the serum raised against this GBC fragment-mediated opsonophagocytic killing best, but in a capsule dependent manner. Overall, the GBC 13-mer was identified to be a highly promising antigen for incorporation into future (multicomponent) anti-GBS vaccines.

17.
J Proteomics ; 232: 104025, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33160105

RESUMO

Among diarrheagenic E. coli (DEC), enterohaemorrhagic E. coli (EHEC) are the most virulent anthropozoonotic agents. The ability of bacterial cells to functionally interact with their surrounding essentially relies on the secretion of different protein effectors. To experimentally determine the repertoire of extracytoproteins in E. coli O157:H7, a subproteomic analysis was performed not only considering the extracellular milieu but the cell surface and outer membrane vesicles. Following a secretome-based approach, the proteins trafficking from the interior to the exterior of the cell were depicted considering cognate protein transport systems and subcellular localisation. Label-free quantitative analysis of the proteosurfaceome, proteovesiculome and exoproteome from E. coli O157:H7 grown in three different nutrient media revealed differential protein expression profiles and allowed defining the core and variant subproteomes. Network analysis further revealed the higher abundance of some protein clusters in chemically defined medium over rich complex medium, especially related to some outer membrane proteins, ABC transport and Type III secretion systems. This first comprehensive study of the EHEC secretome unravels the profound influence of environmental conditions on the extracytoplasmic proteome, provides new insight in the physiology of E. coli O157:H7 and identifies potentially important molecular targets for the development of preventive strategies against EHEC/STEC. SIGNIFICANCE: Escherichia coli O157:H7 is responsible for severe diarrhoea especially in young children. Despite years of investigations, the global view of the extracytoplasmic proteins expressed in this microorganism was eluded. To provide the first comprehensive view of the secretome landscape of E. coli O157:H7, the exoproteome, proteosurfaceome and proteovesiculome were profiled using growth conditions most likely to induce changes in bacterial protein secretion. The profound influence of growth conditions on the extracytoplasmic proteome was unravelled and allowed identifying the core and variant subproteomes. Besides new insight in the physiology of enterohaemorrhagic E. coli, these proteins potentially constitute important molecular targets for the development of preventive strategies.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Proteoma
19.
J Bacteriol ; 191(11): 3544-52, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329633

RESUMO

The group B streptococcus type I pullulanase (SAP) is a class 13 glycoside hydrolase that is anchored to the bacterial cell surface via a conserved C-terminal anchoring motif and involved in alpha-glucan degradation. Recent in vitro functional studies have shown that SAP is immunogenic in humans and that anti-SAP sera derived from immunized animals impair both group A and group B streptococcus pullulanase activities, suggesting that in vivo immunization with this antigen could prevent streptococcal colonization. To further investigate the putative role of SAP in bacterial pathogenesis, we carried out functional studies and found that recombinant SAP binds to human cervical epithelial cells. Furthermore, with a view of using SAP as a vaccine candidate, we present high-resolution crystal structure analyses of an N-terminally truncated form of SAP lacking the carbohydrate binding module but containing the catalytic domain and displaying glycosidase hydrolase activity, both in its apo form and in complex with maltotetraose, at resolutions of 2.1 and 2.4 A, respectively.


Assuntos
Cristalografia por Raios X/métodos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Streptococcus agalactiae/metabolismo , Vacinas Bacterianas , Cálcio/metabolismo , Linhagem Celular Tumoral , Cloretos/metabolismo , Células Epiteliais/metabolismo , Glicosídeo Hidrolases/genética , Humanos , Ligação de Hidrogênio , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Infecções Estreptocócicas/prevenção & controle
20.
Sci Rep ; 9(1): 17016, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31745120

RESUMO

The Gram-negative bacterium B. pertussis is the causative agent of whooping cough. This infection is re-emerging and new features related to Bordetella pathogenesis and microbiology could be relevant to defeat it. Therefore, we focused our attention on BP1253, a predicted exported protein from B. pertussis erroneously classified as lysine decarboxylase. We showed that BP1253 shares the highly conserved motif PGGxGTxxE and the key catalytic amino-acid residues with newly structurally characterized "LONELY GUY" (LOG) proteins. Biochemical studies have confirmed that this protein functions as a cytokinin-activating enzyme since it cleaves the N-glycosidic linkage between the base and the ribose, leading to the formation of free bases, which are the active form of plant hormones called cytokinins. Remarkably, BP1253 selectively binds monophosphate nucleotides such as AMP, GMP and CMP, showing a wider variety in binding capacity compared to other LOGs. Cytokinin production studies performed with B. pertussis have revealed 6-O-methylguanine to be the physiological product of BP1253 in agreement with the higher activity of the enzyme towards GMP. 6-O-methylguanine is likely to be responsible for the increased sensitivity of B. pertussis to oxidative stress. Although BP1253 has a primary sequence resembling the hexameric type-II LOGs, the dimeric state and the presence of specific amino-acids suggests that BP1253 can be classified as a novel type-II LOG. The discovery of a LOG along with its product 6-O-methylguanine in the human pathogen B. pertussis may lead to the discovery of unexplored functions of LOGs, broadening their role beyond plants.


Assuntos
Aminoidrolases/metabolismo , Bordetella pertussis/enzimologia , Citocininas/metabolismo , Sequência de Aminoácidos , Aminoidrolases/genética , Bordetella pertussis/genética , Guanina/análogos & derivados , Guanina/biossíntese , Humanos , Estresse Oxidativo , Coqueluche/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA