Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Malar J ; 23(1): 104, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609964

RESUMO

BACKGROUND: While Plasmodium falciparum and Plasmodium vivax cause the majority of malaria cases and deaths, infection by Plasmodium malariae and other Plasmodium species also causes morbidity and mortality. Current understanding of these infections is limited in part by existing point-of-care diagnostics that fail to differentiate them and have poor sensitivity for low-density infections. Accurate diagnosis currently requires molecular assays performed in well-resourced laboratories. This report describes the development of a P. malariae diagnostic assay that uses rapid, isothermal recombinase polymerase amplification (RPA) and lateral-flow-strip detection. METHODS: Multiple combinations of custom RPA primers and probes were designed using publicly available P. malariae genomic sequences, and by modifying published primer sets. Based on manufacturer RPA reaction conditions (TwistDx nfo kit), an isothermal assay was optimized targeting the multicopy P. malariae 18S rRNA gene with 39 °C incubation and 30-min run time. RPA product was visualized using lateral strips (FAM-labeled, biotinylated amplicon detected by a sandwich immunoassay, visualized using gold nanoparticles). Analytical sensitivity was evaluated using 18S rRNA plasmid DNA, and clinical sensitivity determined using qPCR-confirmed samples collected from Tanzania, Ethiopia, and the Democratic Republic of the Congo. RESULTS: Using 18S rRNA plasmid DNA, the assay demonstrates a detection limit of 10 copies/µL (~ 1.7 genome equivalents) and 100% analytical specificity. Testing in field samples showed 95% clinical sensitivity and 88% specificity compared to qPCR. Total assay time was less than 40 min. CONCLUSION: Combined with simplified DNA extraction methods, the assay has potential for future field-deployable, point-of-care use to detect P. malariae infection, which remains largely undiagnosed but a neglected cause of chronic malaria. The assay provides a rapid, simple readout on a lateral flow strip without the need for expensive laboratory equipment.


Assuntos
Ouro , Nanopartículas Metálicas , RNA Ribossômico 18S/genética , Bioensaio , DNA
2.
Malar J ; 23(1): 27, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238806

RESUMO

BACKGROUND: Though Plasmodium vivax is the second most common malaria species to infect humans, it has not traditionally been considered a major human health concern in central Africa given the high prevalence of the human Duffy-negative phenotype that is believed to prevent infection. Increasing reports of asymptomatic and symptomatic infections in Duffy-negative individuals throughout Africa raise the possibility that P. vivax is evolving to evade host resistance, but there are few parasite samples with genomic data available from this part of the world. METHODS: Whole genome sequencing of one new P. vivax isolate from the Democratic Republic of the Congo (DRC) was performed and used in population genomics analyses to assess how this central African isolate fits into the global context of this species. RESULTS: Plasmodium vivax from DRC is similar to other African populations and is not closely related to the non-human primate parasite P. vivax-like. Evidence is found for a duplication of the gene PvDBP and a single copy of PvDBP2. CONCLUSION: These results suggest an endemic P. vivax population is present in central Africa. Intentional sampling of P. vivax across Africa would further contextualize this sample within African P. vivax diversity and shed light on the mechanisms of infection in Duffy negative individuals. These results are limited by the uncertainty of how representative this single sample is of the larger population of P. vivax in central Africa.


Assuntos
Malária Vivax , Malária , Animais , Humanos , Plasmodium vivax/genética , Malária Vivax/parasitologia , África Central , Genômica , Sistema do Grupo Sanguíneo Duffy/genética
3.
medRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961397

RESUMO

Background: P. ovale spp. infections are endemic across multiple African countries and are caused by two distinct non-recombining species, P. ovale curtisi (Poc) and P. ovale wallikeri (Pow). These species are thought to differ in clinical symptomatology and latency, but existing diagnostic assays have limited ability to detect and distinguish them. In this study, we developed a new duplex assay for the detection and differentiation of Poc and Pow that can be used to improve our understanding of these parasites. Methods: Repetitive sequence motifs were identified in available Poc and Pow genomes and used for assay development and validation. We evaluated the analytical sensitivity and specificity of the best-performing assay using a panel of samples from Tanzania and the Democratic Republic of the Congo (DRC), then validated its performance using 55 P. ovale spp. samples and 40 non-ovale Plasmodium samples from the DRC. Poc and Pow prevalence among symptomatic individuals sampled across three provinces of the DRC were estimated. Results: The best-performing Poc and Pow targets had 9 and 8 copies within the reference genomes, respectively. Our duplex assay had 100% specificity and 95% confidence lower limits of detection of 4.2 and 41.2 parasite genome equivalents/µl for Poc and Pow, respectively. Species was determined in 80% of all P. ovale spp.-positive field samples and 100% of those with >10 parasites/µl. Most P. ovale spp. field samples from the DRC were found to be Poc infections. Conclusions: We identified promising multi-copy targets for molecular detection and differentiation of Poc and Pow and used them to develop a new duplex real-time PCR assay that performed well when applied to diverse field samples. Though low-density Pow infections are not reliably detected, the assay is highly specific and can be used for high-throughput studies of P. ovale spp. epidemiology among symptomatic cases in malaria-endemic countries like the DRC.

4.
medRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37790493

RESUMO

P. malariae is found worldwide and causes chronic parasitism in its human hosts. We developed a P. malariae (Pm) diagnostic assay that uses rapid, isothermal recombinase polymerase amplification (RPA) and lateral-flow-strip detection. Using 18S rRNA plasmid DNA, the assay demonstrates a detection limit of 10 copies /µL (~1.7 genome equivalents) and 100% analytical specificity. Testing in field samples showed 95% clinical sensitivity and 88% specificity compared to qPCR. Total assay time was 35 minutes. Combined with simplified DNA extraction methods, the assay has potential for future field-deployable point-of-care use to detect a parasite species that remains largely undiagnosed.

5.
EBioMedicine ; 68: 103415, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34139428

RESUMO

BACKGROUND: CRISPR-based diagnostics are a new class of highly sensitive and specific assays with multiple applications in infectious disease diagnosis. SHERLOCK, or Specific High-Sensitivity Enzymatic Reporter UnLOCKing, is one such CRISPR-based diagnostic that combines recombinase polymerase pre-amplification, CRISPR-RNA base-pairing, and LwCas13a activity for nucleic acid detection. METHODS: We developed SHERLOCK assays capable of detecting all Plasmodium species known to cause human malaria and species-specific detection of P. vivax and P. falciparum, the species responsible for the majority of malaria cases worldwide. We further tested these assays using a diverse panel of clinical samples from the Democratic Republic of the Congo, Uganda, and Thailand and pools of Anopheles mosquitoes from Thailand. In addition, we developed a prototype SHERLOCK assay capable of detecting the dihydropteroate synthetase (dhps) single nucleotide variant A581G associated with P. falciparum sulfadoxine resistance. FINDINGS: The suite of Plasmodium assays achieved analytical sensitivities ranging from 2•5-18•8 parasites per reaction when tested against laboratory strain genomic DNA. When compared to real-time PCR, the P. falciparum assay achieved 94% sensitivity and 94% specificity during testing of 123 clinical samples. Compared to amplicon-based deep sequencing, the dhps SHERLOCK assay achieved 73% sensitivity and 100% specificity when applied to a panel of 43 clinical samples, with false-negative calls only at lower parasite densities. INTERPRETATION: These novel SHERLOCK assays demonstrate the versatility of CRISPR-based diagnostics and their potential as a new generation of molecular tools for malaria diagnosis and surveillance. FUNDING: National Institutes of Health (T32GM007092, R21AI148579, K24AI134990, R01AI121558, UL1TR002489, P30CA016086).


Assuntos
Testes Diagnósticos de Rotina/métodos , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Técnicas de Genotipagem/métodos , Malária/diagnóstico , Plasmodium/classificação , Pareamento de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Congo , DNA de Protozoário/genética , República Democrática do Congo , Diagnóstico Precoce , Humanos , Plasmodium/genética , Plasmodium/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Vigilância da População , Estudo de Prova de Conceito , Sensibilidade e Especificidade , Especificidade da Espécie , Sulfadoxina/farmacologia , Tailândia , Uganda
6.
Sci Rep ; 11(1): 6495, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753817

RESUMO

The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes (pfhrp2/3) raise concern about existing malaria diagnostic strategies. We previously identified pfhrp2-negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT; pfhrp2/3 genotyping and species-specific PCR assays; a bead-based immunoassay for Plasmodium antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative pfhrp2/3 deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with P. falciparum was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen's kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to pfhrp2/3-deleted P. falciparum was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC.


Assuntos
Malária/diagnóstico , Técnicas de Diagnóstico Molecular/normas , Plasmodium falciparum/genética , Adolescente , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Criança , Reações Falso-Negativas , Humanos , Malária/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/patogenicidade , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase/normas , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Kit de Reagentes para Diagnóstico/normas , Testes Sorológicos/métodos , Testes Sorológicos/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA