RESUMO
Serotonin (5-HT) plays an essential role in reward processing, however, the possibilities to investigate 5-HT action in humans during emotional stimulation are particularly limited. Here we demonstrate the feasibility of assessing reward-specific dynamics in 5-HT synthesis using functional PET (fPET), combining its molecular specificity with the high temporal resolution of blood oxygen level dependent (BOLD) fMRI. Sixteen healthy volunteers underwent simultaneous fPET/fMRI with the radioligand [11C]AMT, a substrate for tryptophan hydroxylase. During the scan, participants completed the monetary incentive delay task and arterial blood samples were acquired for quantifying 5-HT synthesis rates. BOLD fMRI was recorded as a proxy of neuronal activation, allowing differentiation of reward anticipation and feedback. Monetary gain and loss resulted in substantial increases in 5-HT synthesis in the ventral striatum (VStr, +21% from baseline) and the anterior insula (+41%). In the VStr, task-specific 5-HT synthesis was further correlated with BOLD signal changes during reward feedback (ρ = -0.65), but not anticipation. Conversely, 5-HT synthesis in the anterior insula correlated with BOLD reward anticipation (ρ = -0.61), but not feedback. In sum, we provide a robust tool to identify task-induced changes in 5-HT action in humans, linking the dynamics of 5-HT synthesis to distinct phases of reward processing in a regionally specific manner. Given the relevance of altered reward processing in psychiatric disorders such as addiction, depression and schizophrenia, our approach offers a tailored assessment of impaired 5-HT signaling during cognitive and emotional processing.
RESUMO
BACKGROUND: One of the main features of several metabolic disorders is dysregulation of hepatic glucose and lipid metabolism. Deuterium metabolic imaging (DMI) allows for assessing the uptake and breakdown of 2H-labeled substrates, giving specific insight into nutrient processing in healthy and diseased organs. Thus, DMI could be a useful approach for analyzing the differences in liver metabolism of healthy and diseased subjects to gain a deeper understanding of the alterations related to metabolic disorders. PURPOSE: Evaluating the feasibility of DMI as a tool for the assessment of metabolic differences in rodents with healthy and fatty livers (FLs). STUDY TYPE: Animal Model. POPULATION: 18 male Sprague Dawley rats on standard (SD, n = 9, healthy) and high-fat diet (HFD, n = 9, FL disease). FIELD STRENGTH/SEQUENCE: Phase-encoded 1D pulse-acquire sequence and anatomy co-registered phase-encoded 3D pulse-acquire chemical shift imaging for 2H at 9.4T. ASSESSMENT: Localized and nonlocalized liver spectroscopy was applied at eight time points over 104 minutes post injection. The obtained spectra were preprocessed and quantified using jMRUI (v7.0) and the resulting amplitudes translated to absolute concentration (mM) according to the 2H natural abundance water peak. STATISTICAL TESTS: Two-way repeated measures ANOVA were employed to assess between-group differences, with statistical significance at P < 0.05. RESULTS: DMI measurements demonstrated no significant difference (P = 0.98) in the uptake of [6,6'-2H2]glucose between healthy and impaired animals (AUCSD = 1966.0 ± 151.5 mM - minutes vs. AUCHFD = 2027.0 ± 167.6 mM·minutes). In the diseased group, the intrahepatic uptake of palmitic acid d-31 was higher (AUCHFD = 57.4 ± 17.0 mM·minutes, AUCSD = 33.3 ± 10.5 mM·minutes), but without statistical significance owing to substantial in-group variation (P = 0.73). DATA CONCLUSION: DMI revealed higher concentrations of palmitic acid in rats with FL disease and no difference in hepatic glucose concentration between healthy and impaired animals. Thus, DMI appears to be a useful tool for evaluating metabolism in rodents with FL disease. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
RESUMO
Prokaryotes are under constant pressure from phage infection and thus have evolved multiple means of defense or evasion. While CRISPR-Cas constitutes a robust immune system and appears to be the predominant means of survival for Streptococcus thermophilus when facing lytic phage infection, other forms of phage resistance coexist in this species. Here, we show that S. thermophilus strains with deleted CRISPR-Cas loci can still give rise to phage-resistant clones following lytic phage challenge. Notably, non-CRISPR phage-resistant survivors had multiple mutations which would truncate or recode a membrane-anchored host protease, FtsH. Phage adsorption was dramatically reduced in FtsH mutants, implicating this protein in phage attachment. Phages were isolated which could bypass FtsH-based resistance through mutations predicted to alter tape measure protein translation. Together, these results identify key components in phage propagation that are subject to mutation in the molecular arms race between phage and host cell. IMPORTANCE Streptococcus thermophilus is an important organism for production of cultured dairy foods, but it is susceptible to lytic phages which can lead to failed products. Consequently, mechanisms for phage resistance are an active area of research. One such mechanism is CRISPR-Cas, and S. thermophilus is a model organism for the study of this form of adaptive immunity. Here, we expand on known mechanisms with our finding that spontaneous mutations in ftsH, a gene encoding a membrane-anchored protease, protected against phage infection by disrupting phage adsorption. In turn, mutations in phage tail protein genes allowed phages to overcome ftsH-based resistance. Our results identified components in phage propagation that are subject to mutation in the molecular arms race between phage and host.
Assuntos
Bacteriófagos , Fagos de Streptococcus , Bacteriófagos/genética , Streptococcus thermophilus/genética , Adsorção , Mutação , Peptídeo Hidrolases/genética , Sistemas CRISPR-Cas , Fagos de Streptococcus/genéticaRESUMO
Prostate cancer (PCa) is a common and fatal type of cancer in men. Metastatic PCa (mPCa) is a major factor contributing to its lethality, although the mechanisms remain poorly understood. PTEN is one of the most frequently deleted genes in mPCa. Here we show a frequent genomic co-deletion of PTEN and STAT3 in liquid biopsies of patients with mPCa. Loss of Stat3 in a Pten-null mouse prostate model leads to a reduction of LKB1/pAMPK with simultaneous activation of mTOR/CREB, resulting in metastatic disease. However, constitutive activation of Stat3 led to high LKB1/pAMPK levels and suppressed mTORC1/CREB pathway, preventing mPCa development. Metformin, one of the most widely prescribed therapeutics against type 2 diabetes, inhibits mTORC1 in liver and requires LKB1 to mediate glucose homeostasis. We find that metformin treatment of STAT3/AR-expressing PCa xenografts resulted in significantly reduced tumor growth accompanied by diminished mTORC1/CREB, AR and PSA levels. PCa xenografts with deletion of STAT3/AR nearly completely abrogated mTORC1/CREB inhibition mediated by metformin. Moreover, metformin treatment of PCa patients with high Gleason grade and type 2 diabetes resulted in undetectable mTORC1 levels and upregulated STAT3 expression. Furthermore, PCa patients with high CREB expression have worse clinical outcomes and a significantly increased risk of PCa relapse and metastatic recurrence. In summary, we have shown that STAT3 controls mPCa via LKB1/pAMPK/mTORC1/CREB signaling, which we have identified as a promising novel downstream target for the treatment of lethal mPCa.
Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Strategies to personalize psychopharmacological treatment promise to improve efficacy and tolerability. We measured serotonin transporter occupancy immediately after infusion of the widely prescribed P-glycoprotein substrate citalopram and assessed to what extent variants of the ABCB1 gene affect drug target engagement in the brain in vivo. A total of 79 participants (39 female) including 31 patients with major depression and 48 healthy volunteers underwent two PET/MRI scans with the tracer [11C]DASB and placebo-controlled infusion of citalopram (8 mg) in a cross-over design. We tested the effect of six ABCB1 single nucleotide polymorphisms and found lower SERT occupancy in ABCB1 rs2235015 minor allele carriers (n = 26, MAF = 0.18) compared to major allele homozygotes (t73 = 2.73, pFWE < 0.05) as well as in men compared to women (t73 = 3.33, pFWE < 0.05). These effects were robust to correction for citalopram plasma concentration, age and diagnosis. From occupancy we derived the ratio of occupied to unoccupied SERT, because in theory this measure is equal to the product of drug affinity and concentration at target sites. A model combining genotype with basic clinical variables, predicted that, at the same dosage, occupied to unoccupied SERT ratio was -14.48 ± 5.38% lower in rs2235015 minor allele carriers, +19.10 ± 6.95% higher in women, -4.83 ± 2.70% lower per 10 kg bodyweight, and -2.68 ± 3.07% lower per 10 years of age. Our results support the exploration of clinical algorithms with adjustment of initial citalopram dosing and highlight the potential of imaging-genetics for precision pharmacotherapy in psychiatry.
Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Feminino , Humanos , Masculino , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Encéfalo/metabolismo , Citalopram/farmacologia , Citalopram/uso terapêutico , Tomografia por Emissão de Pósitrons , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estudos Cross-OverRESUMO
Androgen deprivation therapy (ADT) remains a key approach in the treatment of prostate cancer (PCa). However, PCa inevitably relapses and becomes ADT resistant. Besides androgens, there is evidence that thyroid hormone thyroxine (T4) and its active form 3,5,3'-triiodo-L-thyronine (T3) are involved in the progression of PCa. Epidemiologic evidences show a higher incidence of PCa in men with elevated thyroid hormone levels. The thyroid hormone binding protein µ-Crystallin (CRYM) mediates intracellular thyroid hormone action by sequestering T3 and blocks its binding to cognate receptors (TRα/TRß) in target tissues. We show in our study that low CRYM expression levels in PCa patients are associated with early biochemical recurrence and poor prognosis. Moreover, we found a disease stage-specific expression of CRYM in PCa. CRYM counteracted thyroid and androgen signaling and blocked intracellular choline uptake. CRYM inversely correlated with [18F]fluoromethylcholine (FMC) levels in positron emission tomography/magnetic resonance imaging of PCa patients. Our data suggest CRYM as a novel antagonist of T3- and androgen-mediated signaling in PCa. The role of CRYM could therefore be an essential control mechanism for the prevention of aggressive PCa growth.
Assuntos
Cristalinas/genética , Cristalinas/metabolismo , Regulação para Baixo , Neoplasias da Próstata/patologia , Transdução de Sinais , Linhagem Celular Tumoral , Colina/administração & dosagem , Colina/análogos & derivados , Estudos de Coortes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metabolômica , Estadiamento de Neoplasias , Células PC-3 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Prognóstico , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores dos Hormônios Tireóideos/genética , Análise de Sequência de RNA , Análise Serial de Tecidos , Tri-Iodotironina/antagonistas & inibidores , Tri-Iodotironina/metabolismo , Cristalinas muRESUMO
This review describes the contribution of basic research on phage-bacteria interactions to the understanding of CRISPR-Cas systems and their various applications. It focuses on the natural function of CRISPR-Cas systems as adaptive defense mechanisms against mobile genetic elements such as bacteriophage genomes and plasmids. Some of the advances in the characterization of the type II-A CRISPR-Cas system of Streptococcus thermophilus and Streptococcus pyogenes led to the development of the CRISPR-Cas9 genome-editing technology. We mostly discuss the 3 stages of the CRISPR-Cas system in S. thermophilus, namely the adaptation stage, which is unique to this resistance mechanism; the CRISPR RNA biogenesis; and the DNA-cutting activity in the interference stage to protect bacteria against phages. Finally, we look into applications of CRISPR-Cas in microbiology, including overcoming limitations in genome editing.
Assuntos
Adaptação Fisiológica , Bacteriófagos/fisiologia , Sistemas CRISPR-Cas , Edição de Genes , Streptococcus thermophilus/fisiologiaRESUMO
The serotonin-1A receptor (5-HT1AR) represents a viable target in the treatment of disorders of the brain. However, development of psychiatric drugs continues to be hindered by the relative inaccessibility of brain tissue. Although the efficacy of drugs selective for the 5-HT1AR has not been proven, research continues to focus on drugs that influence this receptor subtype. To further knowledge on this topic, we investigated the topological coexpression patterns of the 5-HT1AR. We calculated Spearman's rho for the correlation of positron emission tomography-binding potentials (BPND) of the 5-HT1AR assessed in 30 healthy subjects using the tracer [carbonyl-11C]WAY-100635 and predicted whole-brain mRNA expression of 18 686 genes. After applying a threshold of r > 0.3 in a leave-one-out cross-validation of the prediction of mRNA expression, genes with ρ ≥ 0.7 were considered to be relevant. In cortical regions, 199 genes showed high correlation with the BPND of the 5-HT1AR, in subcortical regions 194 genes. Using our approach, we could consolidate the role of BDNF and implicate new genes (AnxA8, NeuroD2) in serotonergic functioning. Despite its explorative nature, the analysis can be seen as a gene prioritization approach to reduce the number of genes potentially connected to 5-HT1AR functioning and guide future in vitro studies.
Assuntos
Encéfalo/metabolismo , RNA Mensageiro/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Anexinas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Neuropeptídeos/genética , Piperazinas , Tomografia por Emissão de Pósitrons , Piridinas , Receptor 5-HT1A de Serotonina/genética , Antagonistas da Serotonina , Transcriptoma , Adulto JovemRESUMO
Streptococcus thermophilus is a lactic acid bacterium commonly used for the manufacture of yogurt and specialty cheeses. Virulent phages represent a major risk for milk fermentation processes worldwide, as they can inactivate the added starter bacterial cells, leading to low-quality fermented dairy products. To date, four genetically distinct groups of phages infecting S. thermophilus have been described. Here, we describe a fifth group. Phages P738 and D4446 are virulent siphophages that infect a few industrial strains of S. thermophilus The genomes of phages P738 and D4446 were sequenced and found to contain 34,037 and 33,656 bp as well as 48 and 46 open reading frames, respectively. Comparative genomic analyses revealed that the two phages are closely related to each other but display very limited similarities to other S. thermophilus phages. In fact, these two novel S. thermophilus phages share similarities with streptococcal phages of nondairy origin, suggesting that they emerged recently in the dairy environment.IMPORTANCE Despite decades of research and adapted antiphage strategies such as CRISPR-Cas systems, virulent phages are still a persistent risk for the milk fermentation industry worldwide, as they can cause manufacturing failures and alter product quality. Phages P738 and D4446 are novel virulent phages that infect the food-grade Gram-positive bacterial species Streptococcus thermophilus These two related viruses represent a fifth group of S. thermophilus phages, as they are significantly distinct from other known S. thermophilus phages. Both phages share similarities with phages infecting nondairy streptococci, suggesting their recent emergence and probable coexistence in dairy environments. These findings highlight the necessity of phage surveillance programs as the phage population evolves in response to the application of antiphage strategies.
Assuntos
Siphoviridae/classificação , Fagos de Streptococcus/classificação , Streptococcus thermophilus/virologia , Microscopia Eletrônica de Transmissão , Análise de Sequência de DNA , Siphoviridae/genética , Siphoviridae/ultraestrutura , Fagos de Streptococcus/genética , Fagos de Streptococcus/ultraestruturaRESUMO
P-Glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) in the canalicular membrane of hepatocytes mediate the biliary excretion of drugs and drug metabolites. To measure hepatic ABCB1 and ABCG2 activity, we performed positron emission tomography (PET) scans with the ABCB1/ABCG2 substrate [11C]tariquidar in healthy volunteers and wild-type, Abcb1a/b(-/-), Abcg2(-/-), and Abcb1a/b(-/-)Abcg2(-/-) mice without and with coadministration of unlabeled tariquidar. PET data were analyzed with a three-compartment pharmacokinetic model. [11C]Tariquidar underwent hepatobiliary excretion in both humans and mice, and tariquidar coadministration caused a significant reduction in the rate constant for the transfer of radioactivity from the liver into bile (by -74% in humans and by -62% in wild-type mice), suggesting inhibition of canalicular efflux transporter activity. Radio-thin-layer chromatography analysis revealed that the majority of radioactivity (>87%) in the mouse liver and bile was composed of unmetabolized [11C]tariquidar. PET data in transporter knockout mice revealed that both ABCB1 and ABCG2 mediated biliary excretion of [11C]tariquidar. In vitro experiments indicated that tariquidar is not a substrate of major hepatic basolateral uptake transporters (SLCO1B1, SLCO1B3, SLCO2B1, SLC22A1, and SLC22A3). Our data suggest that [11C]tariquidar can be used to measure hepatic canalicular ABCB1/ABCG2 transport activity without a confounding effect of uptake transporters.
Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fígado/diagnóstico por imagem , Proteínas de Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons , Quinolinas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Animais , Bile/metabolismo , Isótopos de Carbono/química , Vesícula Biliar/diagnóstico por imagem , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Quinolinas/química , Distribuição TecidualRESUMO
Parcellation of distinct areas in the cerebral cortex has a long history in neuroscience and is of great value for the study of brain function, specialization, and alterations in neuropsychiatric disorders. Analysis of cytoarchitectonical features has revealed their close association with molecular profiles based on protein density. This provides a rationale for the use of in vivo molecular imaging data for parcellation of the cortex with the advantage of whole-brain coverage. In the current work, parcellation was based on expression of key players of the serotonin neurotransmitter system. Positron emission tomography was carried out for the quantification of serotonin 1A (5-HT1A, n = 30) and 5-HT2A receptors (n = 22), the serotonin-degrading enzyme monoamine oxidase A (MAO-A, n = 32) and the serotonin transporter (5-HTT, n = 24) in healthy participants. Cortical protein distribution maps were obtained using surface-based quantification. Based on k-means clustering, silhouette criterion and bootstrapping, five distinct clusters were identified as the optimal solution. The defined clusters proved of high explanatory value for the effects of psychotropic drugs acting on the serotonin system, such as antidepressants and psychedelics. Therefore, the proposed method constitutes a sensible approach towards integration of multimodal imaging data for research and development in neuropharmacology and psychiatry.
Assuntos
Córtex Cerebral/metabolismo , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Serotonina/metabolismo , Adulto JovemRESUMO
Oenococcus oeni is the lactic acid bacterium (LAB) that most commonly drives malolactic fermentation in wine. Although oenococcal prophages are highly prevalent, their implications on bacterial fitness have remained unexplored and more research is required in this field. An important step toward achieving this goal is the ability to produce isogenic pairs of strains that differ only by the lysogenic presence of a given prophage, allowing further comparisons of different phenotypic traits. A novel protocol for the rapid isolation of lysogens is presented. Bacteria were first picked from the center of turbid plaques produced by temperate oenophages on a sensitive nonlysogenic host. When streaked onto an agar medium containing red grape juice (RGJ), cells segregated into white and red colonies. PCR amplifications with phage-specific primers demonstrated that only lysogens underwent white-red morphotypic switching. The method proved successful for various oenophages irrespective of their genomic content and attachment site used for site-specific recombination in the bacterial chromosome. The color switch was also observed when a sensitive nonlysogenic strain was infected with an exogenously provided lytic phage, suggesting that intracolonial lysis triggers the change. Last, lysogens also produced red colonies on white grape juice agar supplemented with polyphenolic compounds. We posit that spontaneous prophage excision produces cell lysis events in lysogenic colonies growing on RGJ agar, which, in turn, foster interactions between lysed materials and polyphenolic compounds to yield colonies easily distinguishable by their red color. Furthermore, the technique was used successfully with other species of LAB.IMPORTANCE The presence of white and red colonies on red grape juice (RGJ) agar during enumeration of Oenococcus oeni in wine samples is frequently observed by stakeholders in the wine industry. Our study brings an explanation for this intriguing phenomenon and establishes a link between the white-red color switch and the lysogenic state of O. oeni It also provides a simple and inexpensive method to distinguish between lysogenic and nonlysogenic derivatives in O. oeni with a minimum of expended time and effort. Noteworthy, the protocol could be adapted to two other species of LAB, namely, Leuconostoc citreum and Lactobacillus plantarum It could be an effective tool to provide genetic, ecological, and functional insights into lysogeny and aid in improving biotechnological processes involving members of the lactic acid bacterium (LAB) family.
Assuntos
Ágar/química , Meios de Cultura/química , Sucos de Frutas e Vegetais , Lisogenia , Oenococcus/fisiologia , Vitis , Contagem de Colônia Microbiana , Oenococcus/genética , Fenótipo , Filogenia , Prófagos , Vinho/microbiologiaRESUMO
Organic anion-transporting polypeptides (OATPs) mediate the uptake of various drugs from blood into the liver in the basolateral membrane of hepatocytes. Positron emission tomography (PET) is a potentially powerful tool to assess the activity of hepatic OATPs in vivo, but its utility critically depends on the availability of transporter-selective probe substrates. We have shown before that among the three OATPs expressed in hepatocytes (OATP1B1, OATP1B3, and OATP2B1), [11C]erlotinib is selectively transported by OATP2B1. In contrast to OATP1B1 and OATP1B3, OATP2B1 has not been thoroughly explored yet, and no specific probe substrates are currently available. To assess if the prototypical OATP inhibitor rifampicin can inhibit liver uptake of [11C]erlotinib in vivo, we performed [11C]erlotinib PET scans in six healthy volunteers without and with intravenous pretreatment with rifampicin (600 mg). In addition, FVB mice underwent [11C]erlotinib PET scans without and with concurrent intravenous infusion of high-dose rifampicin (100 mg/kg). Rifampicin caused a moderate reduction in the liver distribution of [11C]erlotinib in humans, while a more pronounced effect of rifampicin was observed in mice, in which rifampicin plasma concentrations were higher than in humans. In vitro uptake experiments in an OATP2B1-overexpressing cell line indicated that rifampicin inhibited OATP2B1 transport of [11C]erlotinib in a concentration-dependent manner with a half-maximum inhibitory concentration of 72.0 ± 1.4 µM. Our results suggest that rifampicin-inhibitable uptake transporter(s) contributed to the liver distribution of [11C]erlotinib in humans and mice and that [11C]erlotinib PET in combination with rifampicin may be used to measure the activity of this/these uptake transporter(s) in vivo. Furthermore, our data suggest that a standard clinical dose of rifampicin may exert in vivo a moderate inhibitory effect on hepatic OATP2B1.
Assuntos
Cloridrato de Erlotinib/farmacocinética , Fígado/metabolismo , Rifampina/farmacocinética , Adulto , Animais , Cloridrato de Erlotinib/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/química , Tomografia por Emissão de Pósitrons , Rifampina/sangueRESUMO
Altered serotonergic neurotransmission has been found to cause impulsive and aggressive behavior, as well as increased motor activity, all exemplifying key symptoms of ADHD. The main objectives of this positron emission tomography (PET) study were to investigate the serotonin transporter binding potential (SERT BPND ) in patients with ADHD and to assess associations of SERT BPND between the brain regions. 25 medication-free patients with ADHD (age ± SD; 32.39 ± 10.15; 10 females) without any psychiatric comorbidity and 25 age and sex matched healthy control subjects (33.74 ± 10.20) were measured once with PET and the highly selective and specific radioligand [11 C]DASB. SERT BPND maps in nine a priori defined ROIs exhibiting high SERT binding were compared between groups by means of a linear mixed model. Finally, adopted from structural and functional connectivity analyses, we performed correlational analyses using regional SERT binding potentials to examine molecular interregional associations between all selected ROIs. We observed significant differences in the interregional correlations between the precuneus and the hippocampus in patients with ADHD compared to healthy controls, using SERT BPND of the investigated ROIs (P < 0.05; Bonferroni corrected). When correlating SERT BPND and age in the ADHD and the healthy control group, we confirmed an age-related decline in brain SERT binding in the thalamus and insula (R2 = 0.284, R2 = 0.167, Ps < 0.05; Bonferroni corrected). The results show significantly different interregional molecular associations of the SERT expression for the precuneus with hippocampus in patients with ADHD, indicating presumably altered functional coupling. Altered interregional coupling between brain regions might be a sensitive approach to demonstrate functional and molecular alterations in psychiatric conditions. Hum Brain Mapp 38:792-802, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Encéfalo/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Modelos Lineares , Masculino , Escalas de Graduação Psiquiátrica , Adulto JovemRESUMO
AIMS: The efflux transporter P-glycoprotein (ABCB1) acts at the blood-brain barrier (BBB) to restrict the distribution of many different drugs from blood to the brain. Previous data suggest an age-associated decrease in the expression and function of ABCB1 at the BBB. In the present study, we investigated the influence of age on the magnitude of an ABCB1-mediated drug-drug interaction (DDI) at the BBB. METHODS: We performed positron emission tomography scans using the model ABCB1 substrate (R)-[11 C]verapamil in five young [26 ± 1 years, (mean ± standard deviation)] and five elderly (68 ± 6 years) healthy male volunteers before and after intravenous administration of a low dose of the ABCB1 inhibitor tariquidar (3 mg kg-1 ). RESULTS: In baseline scans, the total distribution volume (VT ) of (R)-[11 C]verapamil in whole-brain grey matter was not significantly different between the elderly (VT = 0.78 ± 0.15) and young (VT = 0.79 ± 0.10) group. After partial (incomplete) ABCB1 inhibition, VT values were significantly higher (P = 0.040) in the elderly (VT = 1.08 ± 0.15) than in the young (VT = 0.80 ± 0.18) group. The percentage increase in (R)-[11 C]verapamil VT following partial ABCB1 inhibition was significantly greater (P = 0.032) in elderly (+40 ± 17%) than in young (+2 ± 17%) volunteers. Tariquidar plasma concentrations were not significantly different between the young (786 ± 178 nmol l-1 ) and elderly (1116 ± 347 nmol l-1 ) group. CONCLUSIONS: Our results provide the first direct evidence of an increased risk for ABCB1-mediated DDIs at the BBB in elderly persons, which may have important consequences for pharmacotherapy of the elderly.
Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Substância Cinzenta/metabolismo , Quinolinas/farmacologia , Verapamil/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Adulto , Fatores Etários , Idoso , Radioisótopos de Carbono/metabolismo , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Masculino , Tomografia por Emissão de PósitronsRESUMO
Reflecting one's mental self is a fundamental process for evaluating the personal relevance of life events and for moral decision making and future envisioning. Although the corresponding network has been receiving growing attention, the driving neurochemical mechanisms of the default mode network (DMN) remain unknown. Here we combined positron emission tomography and functional magnetic resonance imaging to investigate modulations of the DMN via serotonin-1A receptors (5-HT(1A)), separated for 5-HT autoinhibition (dorsal raphe nucleus) and local inhibition (heteroreceptors in projection areas). Using two independent approaches, regional 5-HT(1A) binding consistently predicted DMN activity in the retrosplenial cortex for resting-state functional magnetic resonance imaging and the Tower of London task. On the other hand, both local and autoinhibitory 5-HT(1A) binding inversely modulated the posterior cingulate cortex, the strongest hub in the resting human brain. In the frontal part of the DMN, a negative association was found between the dorsal medial prefrontal cortex and local 5-HT(1A) inhibition. Our results indicate a modulation of key areas involved in self-referential processing by serotonergic neurotransmission, whereas variations in 5-HT(1A) binding explained a considerable amount of the individual variability in the DMN. Moreover, the brain regions associated with distinct introspective functions seem to be specifically regulated by the different 5-HT(1A) binding sites. Together with previously reported modulations of dopamine and GABA, this regional specialization suggests complex interactions of several neurotransmitters driving the default mode network.
Assuntos
Receptor 5-HT1A de Serotonina/fisiologia , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de PósitronsRESUMO
Blocking of the serotonin transporter (SERT) represents the initial mechanism of action of selective serotonin reuptake inhibitors (SSRIs) which can be visualized due to the technical proceedings of SERT occupancy studies. When compared to the striatum, higher SERT occupancy in the midbrain and lower values in the thalamus were reported. This indicates that occupancy might be differently distributed throughout the brain, which is supported by preclinical findings indicating a regionally varying SERT activity and antidepressant drug concentration. The present study therefore aimed to investigate regional SERT occupancies with positron emission tomography and the radioligand [(11)C]DASB in 19 depressed patients after acute and prolonged intake of oral doses of either 10mg/day escitalopram or 20mg/day citalopram. Compared to the mean occupancy across cortical and subcortical regions, we detected increased SERT occupancies in regions commonly associated with antidepressant response, such as the subgenual cingulate, amygdala and raphe nuclei. When acute and prolonged drug intake was compared, SERT occupancies increased in subcortical areas that are known to be rich in SERT. Moreover, SERT occupancy in subcortical brain areas after prolonged intake of antidepressants was predicted by plasma drug levels. Similarly, baseline SERT binding potential seems to impact SERT occupancy, as regions rich in SERT showed greater binding reduction as well as higher residual binding. These findings suggest a region-specific distribution of SERT blockage by SSRIs and relate the postulated link between treatment response and SERT occupancy to certain brain regions such as the subgenual cingulate cortex.
Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/sangueRESUMO
14-(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA) is a radiocompound for imaging the fatty acid circulation by positron emission tomography. A revived interest in imaging of lipid metabolism led us to a constant tracer production over three years, initially using a conventional vessel-based synthesizer and later transitioning to the cassette-based Elixys synthesizer. On the Elixys module, the radiochemical yield of [18F]FTHA could be increased by more than two times, reaching 13.01 ± 5.63% at the end of the synthesis, while maintaining necessary quality control results.
RESUMO
PURPOSE: The potential limitations of hepatic [18F]FDG-PET imaging for individuals with obesity and excessive liver fat (NAFLD) are being investigated. In this study, we aim to determine the reliability of standardized uptake values (SUVs) focusing on adjustment for liver fat content (LFC) derived from DIXON images and the effects of whole-body normalizations. METHODS: Lean and with obesity volunteers who underwent [18F]FDG-PET/MRI were reviewed retrospectively. DIXON fat images were used to determine LFC and for adjustment of SUVmean. The hepatic SUVs (mean, fat adjusted mean and max) were normalized to body weight, lean body mass and body surface area. Blood samples were analysed for glucose, serological liver enzymes and lipoproteins for further correlation of [18F]FDG uptake. RESULTS: Out of 11 volunteers with obesity (M:8, F:3, BMI:30-39 kg/m2), 9 confirmed the presence of NAFLD (>5.6 % fat). 22 age-matched lean volunteers (M:10, F:11, BMI:19-26 kg/m2) were used as control group. Both SUVmean, before and after adjustment to LFC, did not provide any difference between lean and with obesity groups under BW, LBM and BSA. SUVmax BW showed a difference between groups (p = 0.05). SUVs were independent of levels of GPT, GOT, gGT, insulin, HOMA-IR, triglycerides, cholesterol and LDL. Volunteers with low HDL were clustered with an increased hepatic [18F]FDG uptake. CONCLUSION: Our method for adjustment of hepatic [18F]FDG-PET with DIXON fat images allows to achieve accurate results for individuals with NAFLD and obesity. For homogenic results, raw SUVmean should be combined with adjustment for liver fat, appropriate normalization and consideration of HDL levels.