Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985524

RESUMO

Luffa cylindrica biomass was converted to biochar and the removal of 241Am by pristine and oxidized biochar fibers was investigated in laboratory and environmental water samples. This species has the added advantage of a unique microsponge structure that is beneficial for the production of porous adsorbents. The main purpose of this study was to valorize this biomass to produce an efficient adsorbent and investigate its performance in radionuclide-contaminated waters. Following the preparation of Am3+ solutions at a concentration of 10-12 mol/L, the adsorption efficiency (Kd) was determined as a function of pH, adsorbent mass, ionic strength, temperature, and type of aqueous solution by batch experiments. At the optimum adsorbent dose of 0.1 g and pH value of 4, a log10Kd value of 4.2 was achieved by the oxidized biochar sample. The effect of temperature and ionic strength indicated that adsorption is an endothermic and entropy-driven process (ΔH° = -512 kJ mol-1 and ΔS° = -1.2 J K-1 mol-1) leading to the formation of inner-sphere complexes. The adsorption kinetics were relatively slow (24 h equilibrium time) due to the slow diffusion of the radionuclide to the biochar surface and fitted well to the pseudo-first-order kinetic model. Oxidized biochar performed better compared to the unmodified sample and overall appears to be an efficient adsorbent for the treatment of 241Am-contaminated waters, even at ultra-trace concentrations.


Assuntos
Luffa , Poluentes Químicos da Água , Termodinâmica , Adsorção , Carvão Vegetal/química , Água/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Soluções
2.
Molecules ; 27(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36235297

RESUMO

The adsorption of the U-232 radionuclide by biochar fibers in the sub-picomolar concentration range has been investigated in laboratory aqueous solutions and seawater samples. The adsorption efficiency (Kd values and % relative removal) of untreated and oxidized biochar samples towards U-232 has been investigated as a function of pH, adsorbent mass, ionic strength and temperature by means of batch-type experiments. According to the experimental data, the solution pH determines to a large degree the adsorption efficiency, and adsorbent mass and surface oxidation lead to significantly higher Kd values. The ionic strength and temperature effect indicate that the adsorption is based on the formation of inner-sphere complexes, and is an endothermic and entropy-driven process (ΔH° and ΔS° > 0), respectively. Regarding the sorption kinetics, the diffusion of U-232 from the solution to the biochar surface seems to be the rate-determining step. The application of biochar-based adsorbents to treat radioactively (U-232) contaminated waters reveals that these materials are very effective adsorbents, even in the sub-picomolar concentration range.


Assuntos
Urânio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA