Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 480(15): 1183-1197, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37401534

RESUMO

The development and optimisation of a photoaffinity labelling (PAL) displacement assay is presented, where a highly efficient PAL probe was used to report on the relative binding affinities of compounds to specific binding sites in multiple recombinant protein domains in tandem. The N- and C-terminal bromodomains of BRD4 were used as example target proteins. A test set of 264 compounds annotated with activity against the bromodomain and extra-terminal domain (BET) family in ChEMBL were used to benchmark the assay. The pIC50 values obtained from the assay correlated well with orthogonal TR-FRET data, highlighting the potential of this highly accessible PAL biochemical screening platform.

2.
Chemistry ; 27(71): 17880-17888, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328642

RESUMO

We present a one-step Ugi reaction protocol for the expedient synthesis of photoaffinity probes for live-cell MS-based proteomics. The reaction couples an amine affinity function with commonly used photoreactive groups, and a variety of handle functionalities. Using this technology, a series of pan-BET (BET: bromodomain and extra-terminal domain) selective bromodomain photoaffinity probes were obtained by parallel synthesis. Studies on the effects of photoreactive group, linker length and irradiation wavelength on photocrosslinking efficiency provide valuable insights into photoaffinity probe design. Optimal probes were progressed to MS-based proteomics to capture the BET family of proteins from live cells and reveal their potential on- and off-target profiles.


Assuntos
Proteômica
3.
ACS Med Chem Lett ; 14(9): 1231-1236, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736196

RESUMO

The 1,3-dihydro-2H-benzo[d]azepin-2-ones are potent and ligand-efficient pan-BET bromodomain inhibitors. Here we describe the extension of this template to exploit a bivalent mode of action, binding simultaneously to both bromodomains. Initially the linker length and attachment vectors compatible with bivalent binding were explored, leading to the discovery of exceptionally potent bivalent BET inhibitors within druglike rule-of-5 space.

4.
J Med Chem ; 66(23): 15728-15749, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967462

RESUMO

Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo
5.
ACS Med Chem Lett ; 12(8): 1308-1317, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413961

RESUMO

Bromodomain containing proteins and the acetyl-lysine binding bromodomains contained therein are increasingly attractive targets for the development of novel epigenetic therapeutics. To help validate this target class and unravel the complex associated biology, there has been a concerted effort to develop selective small molecule bromodomain inhibitors. Herein we describe the structure-based efforts and multiple challenges encountered in optimizing a naphthyridone template into selective TAF1(2) bromodomain inhibitors which, while unsuitable as chemical probes themselves, show promise for the future development of small molecules to interrogate TAF1(2) biology. Key to this work was the introduction and modulation of the basicity of a pendant amine which had a substantial impact on not only bromodomain selectivity but also cellular target engagement.

6.
J Med Chem ; 64(15): 10806-10833, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251219

RESUMO

Second-generation bromodomain and extra terminal (BET) inhibitors, which selectively target one of the two bromodomains in the BET proteins, have begun to emerge in the literature. These inhibitors aim to help determine the roles and functions of each domain and assess whether they can demonstrate an improved safety profile in clinical settings compared to pan-BET inhibitors. Herein, we describe the discovery of a novel BET BD2-selective chemotype using a structure-based drug design from a hit identified by DNA-encoded library technologies, showing a structural differentiation from key previously reported greater than 100-fold BD2-selective chemotypes GSK620, GSK046, and ABBV-744. Following a structure-based hypothesis for the selectivity and optimization of the physicochemical properties of the series, we identified 60 (GSK040), an in vitro ready and in vivo capable BET BD2-inhibitor of unprecedented selectivity (5000-fold) against BET BD1, excellent selectivity against other bromodomains, and good physicochemical properties. This novel chemical probe can be added to the toolbox used in the advancement of epigenetics research.


Assuntos
DNA/química , Descoberta de Drogas , Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Estrutura Molecular , Domínios Proteicos/efeitos dos fármacos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
J Med Chem ; 64(15): 10772-10805, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34255512

RESUMO

The profound efficacy of pan-BET inhibitors is well documented, but these epigenetic agents have shown pharmacology-driven toxicity in oncology clinical trials. The opportunity to identify inhibitors with an improved safety profile by selective targeting of a subset of the eight bromodomains of the BET family has triggered extensive medicinal chemistry efforts. In this article, we disclose the identification of potent and selective drug-like pan-BD2 inhibitors such as pyrazole 23 (GSK809) and furan 24 (GSK743) that were derived from the pyrrole fragment 6. We transpose the key learnings from a previous pyridone series (GSK620 2 as a representative example) to this novel class of inhibitors, which are characterized by significantly improved solubility relative to our previous research.


Assuntos
Furanos/farmacologia , Proteínas/antagonistas & inibidores , Pirazóis/farmacologia , Relação Dose-Resposta a Droga , Furanos/química , Humanos , Estrutura Molecular , Proteínas/metabolismo , Pirazóis/química , Relação Estrutura-Atividade
8.
J Med Chem ; 63(17): 9045-9069, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691589

RESUMO

Pan-bromodomain and extra terminal (BET) inhibitors interact equipotently with all eight bromodomains of the BET family of proteins. They have shown profound efficacy in vitro and in vivo in oncology and immunomodulatory models, and a number of them are currently in clinical trials where significant safety signals have been reported. It is therefore important to understand the functional contribution of each bromodomain to assess the opportunity to tease apart efficacy and toxicity. This article discloses the in vitro and cellular activity profiles of GSK789, a potent, cell-permeable, and highly selective inhibitor of the first bromodomains of the BET family.


Assuntos
Naftiridinas/química , Fatores de Transcrição/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Meia-Vida , Humanos , Simulação de Dinâmica Molecular , Naftiridinas/metabolismo , Naftiridinas/farmacologia , Domínios Proteicos , Quinolonas/química , Quinolonas/metabolismo , Quinolonas/farmacologia , Fatores de Transcrição/metabolismo
9.
J Med Chem ; 63(6): 3348-3358, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32109056

RESUMO

ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.


Assuntos
Aminopeptidases/antagonistas & inibidores , Apresentação de Antígeno/efeitos dos fármacos , Diterpenos Clerodânicos/farmacologia , Epitopos/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , Sítio Alostérico , Aminopeptidases/química , Aminopeptidases/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/metabolismo , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Epitopos/química , Células HeLa , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Peptídeos/química , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Proteólise/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA