Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(38): 10631-6, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27582468

RESUMO

DNMT3a is a de novo DNA methyltransferase expressed robustly after T-cell activation that regulates plasticity of CD4(+) T-cell cytokine expression. Here we show that DNMT3a is critical for directing early CD8(+) T-cell effector and memory fate decisions. Whereas effector function of DNMT3a knockout T cells is normal, they develop more memory precursor and fewer terminal effector cells in a T-cell intrinsic manner compared with wild-type animals. Rather than increasing plasticity of differentiated effector CD8(+) T cells, loss of DNMT3a biases differentiation of early effector cells into memory precursor cells. This is attributed in part to ineffective repression of Tcf1 expression in knockout T cells, as DNMT3a localizes to the Tcf7 promoter and catalyzes its de novo methylation in early effector WT CD8(+) T cells. These data identify DNMT3a as a crucial regulator of CD8(+) early effector cell differentiation and effector versus memory fate decisions.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Memória Imunológica/genética , Fator 1 de Transcrição de Linfócitos T/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Metilação de DNA/genética , Metilação de DNA/imunologia , DNA Metiltransferase 3A , Ativação Linfocitária/imunologia , Camundongos , Regiões Promotoras Genéticas
2.
Front Genet ; 4: 83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23720669

RESUMO

Interest in extracellular RNA (exRNA) has intensified as evidence accumulates that these molecules may be useful as indicators of a wide variety of biological conditions. To establish specific exRNA molecules as clinically relevant biomarkers, reproducible recovery from biological samples and reliable measurements of the isolated RNA are paramount. Toward these ends, careful and rigorous comparisons of technical procedures are needed at all steps from sample handling to RNA isolation to RNA measurement protocols. In the investigations described in this methods paper, RT-qPCR was used to examine the apparent recovery of specific endogenous miRNAs and a spiked-in synthetic RNA from blood plasma samples. RNA was isolated using several widely used RNA isolation kits, with or without the addition of glycogen as a carrier. Kits examined included total RNA isolation systems that have been commercially available for several years and commonly adapted for extraction of biofluid RNA, as well as more recently introduced biofluids-specific RNA methods. Our conclusions include the following: some RNA isolation methods appear to be superior to others for the recovery of RNA from biological fluids; addition of a carrier molecule seems to be beneficial for some but not all isolation methods; and quantitative recovery of RNA is observed from increasing volumes of cerebrospinal fluid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA