Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Primatol ; 72(7): 617-25, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20196132

RESUMO

Selection and use patterns of sleeping sites in nonhuman primates are suggested to have multiple functions, such as predation avoidance, but they might be further affected by range defense as well as foraging constraints or other factors. Here, we investigate sleeping tree selection by the male and female members of one group of pileated gibbons (Hylobates pileatus) at Khao Ang Rue Nai Wildlife Sanctuary, Thailand. Data were collected on 113 nights, between September 2006 and January 2009, yielding data on 201 sleeping tree choices (107 by the female and 94 by the male) and on the characteristics of 71 individual sleeping trees. Each sleeping tree and all trees > or =40 cm diameter at breast height (DBH) in the home range were assessed (height, DBH, canopy structure, liana load) and mapped using a GPS. The gibbons preferentially selected tall (mean=38.5 m), emergent trees without lianas. The majority of the sleeping trees (53.5%) were used only once and consecutive reuse was rare (9.5%). Sleeping trees were closer to the last feeding tree of the evening than to the first feeding tree in the morning, and sleeping trees were located in the overlap areas with neighbors less often than expected based on time spent in these areas. These results suggest avoidance of predators as the main factor influencing sleeping tree selection in pileated gibbons. However, other non-mutually exclusive factors may be involved as well.


Assuntos
Hylobates/fisiologia , Hylobates/psicologia , Sono/fisiologia , Árvores , Animais , Aprendizagem da Esquiva , Comportamento Animal , Comportamento de Escolha , Clima , Ecossistema , Feminino , Comportamento de Retorno ao Território Vital/fisiologia , Masculino , Comportamento Predatório , Comportamento Social , Tailândia
2.
PLoS One ; 13(11): e0207114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30408090

RESUMO

With less than 3200 wild tigers in 2010, the heads of 13 tiger-range countries committed to doubling the global population of wild tigers by 2022. This goal represents the highest level of ambition and commitment required to turn the tide for tigers in the wild. Yet, ensuring efficient and targeted implementation of conservation actions alongside systematic monitoring of progress towards this goal requires that we set site-specific recovery targets and timelines that are ecologically realistic. In this study, we assess the recovery potential of 18 sites identified under WWF's Tigers Alive Initiative. We delineated recovery systems comprising a source, recovery site, and support region, which need to be managed synergistically to meet these targets. By using the best available data on tiger and prey numbers, and adapting existing species recovery frameworks, we show that these sites, which currently support 165 (118-277) tigers, have the potential to harbour 585 (454-739) individuals. This would constitute a 15% increase in the global population and represent over a three-fold increase within these specific sites, on an average. However, it may not be realistic to achieve this target by 2022, since tiger recovery in 15 of these 18 sites is contingent on the initial recovery of prey populations, which is a slow process. We conclude that while sustained conservation efforts can yield significant recoveries, it is critical that we commit our resources to achieving the biologically realistic targets for these sites even if the timelines are extended.


Assuntos
Espécies em Perigo de Extinção , Tigres , Animais , Ásia , Objetivos , Densidade Demográfica , Comportamento Predatório , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA