Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 45(7): 1492-1505, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38538718

RESUMO

Immunosuppression by the tumor microenvironment is a pivotal factor contributing to tumor progression and immunotherapy resistance. Priming the tumor immune microenvironment (TIME) has emerged as a promising strategy for improving the efficacy of cancer immunotherapy. In this study we investigated the effects of noninvasive radiofrequency radiation (RFR) exposure on tumor progression and TIME phenotype, as well as the antitumor potential of PD-1 blockage in a model of pulmonary metastatic melanoma (PMM). Mouse model of PMM was established by tail vein injection of B16F10 cells. From day 3 after injection, the mice were exposed to RFR at an average specific absorption rate of 9.7 W/kg for 1 h per day for 14 days. After RFR exposure, lung tissues were harvested and RNAs were extracted for transcriptome sequencing; PMM-infiltrating immune cells were isolated for single-cell RNA-seq analysis. We showed that RFR exposure significantly impeded PMM progression accompanied by remodeled TIME of PMM via altering the proportion and transcription profile of tumor-infiltrating immune cells. RFR exposure increased the activation and cytotoxicity signatures of tumor-infiltrating CD8+ T cells, particularly in the early activation subset with upregulated genes associated with T cell cytotoxicity. The PD-1 checkpoint pathway was upregulated by RFR exposure in CD8+ T cells. RFR exposure also augmented NK cell subsets with increased cytotoxic characteristics in PMM. RFR exposure enhanced the effector function of tumor-infiltrating CD8+ T cells and NK cells, evidenced by increased expression of cytotoxic molecules. RFR-induced inhibition of PMM growth was mediated by RFR-activated CD8+ T cells and NK cells. We conclude that noninvasive RFR exposure induces antitumor remodeling of the TIME, leading to inhibition of tumor progression, which provides a promising novel strategy for TIME priming and potential combination with cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Células Matadoras Naturais/imunologia , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos T CD8-Positivos/imunologia , Camundongos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/terapia , Linfócitos do Interstício Tumoral/imunologia , Fenótipo , Receptor de Morte Celular Programada 1 , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
2.
Ecotoxicol Environ Saf ; 263: 115238, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441952

RESUMO

Although adequate intake of manganese (Mn) is essential to humans, Mn in excess is neurotoxic. Exposure to extremely high doses of Mn results in "manganism", a condition that exhibits Parkinson-like symptoms. However, the mechanisms underlying its neurotoxic effects in Mn-induced parkinsonism pathogenesis are unclear. In this study, 8-week-old male C57BL/6 J mice were injected intraperitoneally with saline and 50 mg/kg MnCl2 respectively once daily for 14 days to produce an acute Mn neurotoxicity model. Accumulation of Mn in the midbrain, motor dysfunction and loss of dopaminergic neurons in the substantia nigra evidenced Mn neurotoxicity. Untargeted lipidomic analysis demonstrated that Mn overexposure altered lipidome profiles. A significant modulation of 12 lipid subclasses belonging to 5 different categories were found in the midbrain and among the most abundant lipids were sphingolipids, glycerophospholipids, and glycerides. The levels of sphingomyelin (SM) were significantly decreased after Mn treatment. The expression of SM biosynthesis genes was decreased dramatically while sphingomyelinase was up-regulated. In addition, we observed oxidative stress in both the midbrain of mice and MN9D cells, indicated by the increase of MDA level, the decrease of reduced GSH level and the inhibition of SOD and GPx enzyme activities. There was a correlation between these changes and motor dysfunctions. Overall, our study is the first to use lipidomics techniques to explore the pathogenesis of Mn-induced parkinsonism in C57BL/6 J mice. Mn induced molecular events in the midbrain, such as lipid metabolism disorders, oxidative stress and dopaminergic neurons injury, may mechanistically play important roles in the pathogenesis of Parkinson-like symptoms. Moreover, these findings emphasize the necessity for reducing the health risk of environmental neurotoxic pollutants in relation to parkinsonism.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Masculino , Humanos , Animais , Camundongos , Manganês/toxicidade , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Lipídeos
3.
Ecotoxicol Environ Saf ; 265: 115517, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37776818

RESUMO

Cadmium is a highly ubiquitous environmental pollutant that poses a serious threat to human health. In this study, we assessed the cardiotoxicity of Cd exposure and explored the possible mechanisms by which Cd exerts its toxic effects. The results demonstrated that exposure to Cd via drinking water containing CdCl2 10 mg/dL for eight consecutive weeks induced cardiac injury in C57BL/6J mice. The histopathological changes of myocardial hemolysis, widening of myocardial space, and fracture of myocardial fiber were observed. Meanwhile, elevated levels of cardiac enzyme markers and up-regulation of pro-apoptotic genes also indicated cardiac injury after Cd exposure. Non-targeted lipidomic analysis demonstrated that Cd exposure altered cardiac lipid metabolism, resulted in an increase in pro-inflammatory lipids, and changed lipid distribution abundance. In addition, Cd exposure affected the secretion of inflammatory cytokines by activating the NF-κB signaling pathway, leading to cardiac inflammation in mice. Taken together, results of our present study expand our understanding of Cd cardiotoxicity at the lipidomic level and provide new experimental evidence for uncovering the association of Cd exposure with cardiovascular diseases.

4.
Ecotoxicol Environ Saf ; 239: 113672, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617906

RESUMO

Fluoride has received much attention for its predominant bone toxicity in the human body. However, the toxic mechanism of bone injury caused by fluoride exposure remains largely unclear. Bone marrow mesenchymal stem cells (BMSCs) are widely used as model cells for evaluating bone toxicity after environmental toxicant exposure. In this study, BMSCs were exposed to fluoride at 1, 2, and 4 mM for 24 h, and fluoride significantly inhibited cell viability at 2 and 4 mM. A multiomics analysis combining transcriptomics with metabolomics was employed to detect alterations in genes and metabolites in BMSCs treated with 2 mM fluoride. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of transcriptomics profiles identified "lysosomes" as the top enriched pathway, which was severely damaged by fluoride exposure. Lysosomal damage was indicated by decreases in the expression of lysosomal associated membrane protein 2 (LAMP 2) and cathepsin B (CTSB) as well as an increase in pH. Upregulation of the lysosome-related genes Atp6v0b and Gla was observed, which may be attributed to a compensatory lysosomal biogenesis transcriptional response. Interestingly, inhibition of glutathione metabolism was observed in fluoride-treated BMSCs at the metabolomic level. Moreover, an integrative analysis between altered genes, metabolites and lysosome signaling pathways was conducted. Palmitic acid, prostaglandin C2, and prostaglandin B2 metabolites were positively associated with Atp6v0b, a lysosome-related gene. Overall, our results provide novel insights into the mechanism responsible for fluoride-induced bone toxicity.


Assuntos
Células-Tronco Mesenquimais , Transcriptoma , Fluoretos/metabolismo , Fluoretos/toxicidade , Humanos , Lisossomos , Células-Tronco Mesenquimais/metabolismo , Metabolômica
5.
Ecotoxicol Environ Saf ; 247: 114270, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36335879

RESUMO

Cadmium (Cd), which is considered an endocrine disruptor, has been linked to the onset of breast cancer (BC). Our recent study demonstrated that Cd-induced BC progression has a strong correlation with miR-374c-5p dysregulation. The aim of our work was to investigate other potential miRNAs involved in Cd-induced BC cell proliferation and metastasis. In our study, the miRNA profiles of Cd-treated T-47D cells (10 µM, 72 h) were analyzed by miRNA-seq, and our results confirmed that miR-3614-5p was the top downregulated miRNA. Moreover, miR-3614-5p mimic transfection significantly decreased the proliferative ability, migration and invasive ability of BC cell lines (T-47D and MCF-7). Furthermore, we analyzed the overlapping genes from our RNA-seq data and predicted targets from the mirDIP database, and twelve genes (ALDH1A3, FBN1, GRIA3, NOS1, PLD5, PTGER4, RASGRF2, RELN, RNF150, SLC17A4, TG, and TXNRD1) were identified as potential binding targets of miR-3614-5p in the current model. Nonetheless, only miR-3614-5p inhibition caused an increase in TXNRD1 expression upon Cd exposure in T-47D and MCF-7 cell lines. Importantly, luciferase reporter assays further verified that miR-3614-5p suppressed the expression of TXNRD1 by directly binding to the 3'-untranslated region (UTR), and TXNRD1 inhibition significantly repressed the proliferation and metastasis capacity of BC cells upon Cd exposure. Together, our findings demonstrated that Cd exposure repressed the expression of miR-3614-5p, thus activating TXNRD1 expression, which promoted the abnormal proliferation and metastasis of BC cells.


Assuntos
MicroRNAs , Neoplasias , Humanos , Cádmio/toxicidade , Regulação para Baixo , Células MCF-7 , MicroRNAs/genética , Proliferação de Células , Tiorredoxina Redutase 1 , Proteínas de Membrana
6.
Ecotoxicol Environ Saf ; 229: 113085, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920184

RESUMO

Cadmium (Cd) is a toxic heavy metal that can facilitate the development and progression of breast cancer (BC). Emerging evidence has indicated that the progression of Cd-exposed BC is related to the dysregulation of microRNAs (miRNAs). The purpose of our study was to investigate the expression pattern and underlying mechanisms of miR-374c-5p in Cd-mediated BC progression. In this study, T-47D cells and MCF-7 cells were treated with different concentrations of Cd (0.1, 1 and 10 µM) for 72 h. MiR-374c-5p expression was downregulated, and transfection of miR-374c-5p mimics significantly decreased BC cell proliferation, migration and invasion induced by 10 µM Cd. Importantly, we used the Cytoscape software plugin cytoHubba to analyse the intersected genes between our RNA-Seq results and the mirDIP database, and six hub genes (CNR1, CXCR4, GRM3, RTN1, SLC1A6 and ZEB1) were identified as potential direct targets of miR-374c-5p in our model; however, luciferase reporter assays indicated that miR-374c-5p only repressed GRM3 by directly binding to its 3'-untranslated region (UTR). Of note, we verified that suppression of N6-methyladenosine (m6A) modification led to miR-374c-5p downregulation by decreasing its RNA transcript stability. Together, these findings demonstrated that m6A modification of pri-miRNA-374c blocks miRNA-374c-5p maturation and then activates GRM3 expression, which drives BC cell metastasis after Cd exposure.


Assuntos
Neoplasias da Mama , MicroRNAs , Adenosina/análogos & derivados , Neoplasias da Mama/genética , Cádmio/toxicidade , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética
7.
Invest New Drugs ; 39(3): 686-696, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33387131

RESUMO

G9a, a histone methyltransferase, has been found to be upregulated in a range of tumor tissues, and contributes to tumor growth and metastasis. However, the impact of G9a inhibition as a potential therapeutic target in nasopharyngeal carcinoma (NPC) is unclear. In the present study we aimed to investigate the anti-proliferative effect of G9a inhibition in the NPC cell lines CNE1 and CNE2, and to further elucidate the molecular mechanisms underlying these effects. The expression of G9a in NPC tumor tissues was significantly higher than that in normal nasopharyngeal tissues. The pharmacological inhibition of G9a by BIX-01294 (BIX) inhibited proliferation and induced caspase-independent apoptosis in NPC cells in vitro. Treatment with BIX induced autophagosome accumulation, which exacerbated the cytotoxic activity of BIX in NPC cells. Mechanistic studies have found that BIX impairs autophagosomes by initiating autophagy in a Beclin-1-independent way, and impairs autophagic degradation by inhibiting lysosomal cathepsin D activation, leading to lysosomal dysfunction. BIX was able to suppress tumor growth, possibly by inhibiting autophagic flux; it might therefore constitute a promising candidate for NPC therapy.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Quinazolinas/farmacologia , Autofagossomos/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , RNA Interferente Pequeno/genética
8.
Ecotoxicol Environ Saf ; 224: 112626, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34411822

RESUMO

Cadmium (Cd) is a carcinogen that stimulates breast cancer (BC) progression. Rapamycin is a macrolide antibiotic produced by Streptomyces hygroscopicus that possesses a wide array of pharmacological activities, including anti-BC activity. However, the effects of rapamycin on Cd-increased BC progression and the underlying mechanism have not been fully elucidated. Here, we hypothesize that rapamycin antagonizes Cd-induced BC cell proliferation and metastasis by directly modulating ACSS2. In this study, we found that rapamycin efficiently inhibited Cd-induced proliferation, invasion and migration in MCF-7 and T47-D cells. Moreover, a surface plasmon resonance (SPR) assay confirmed that rapamycin directly binds to the ACSS2 protein with a calculated equilibrium dissociation constant (KD) of 18.3 µM. Molecular docking showed that there are three binding sites in the ACSS2 protein and that rapamycin binds at the coenzyme A (COA) binding site with a docking score of - 12.26 and a binding free energy of - 26.34 kcal/mol. More importantly, rapamycin suppresses Cd-induced BC progression by activating ACSS2. After cells were cotreated with an ACSS2 inhibitor, the effects of rapamycin were abolished. In conclusion, our findings suggest that rapamycin suppresses Cd-augmented BC progression by upregulating ACSS2, and ACSS2 may serve as a direct target of rapamycin for inhibiting xenobiotic (e.g., Cd)-mediated BC progression.

9.
Ecotoxicol Environ Saf ; 223: 112554, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332247

RESUMO

Arsenic is one of the most common environmental pollutants. Neurotoxicity induced by arsenic has become a major public health concern. However, the effects of arsenic-induced neurotoxicity in the brain and the underlying molecular mechanisms are not well understood. N-acetyl-cysteine (NAC) is a thiol-based antioxidant that can antagonize heavy metal-induced neurotoxicity by scavenging reactive oxygen species (ROS). Here, we used the mouse oligodendrocyte precursor cell (OPC) line Oli-neu to explore the neurotoxic effects of arsenic and the protective effects of NAC. We found that arsenic exposure decreased cell viability, increased oxidative stress, caused mitochondrial dysfunction, and led to apoptosis of Oli-neu cells. Furthermore, we revealed that NAC treatment reversed these neurotoxic effects of arsenic. TMEM179, a key membrane protein, was found highly expressed in OPCs and to be an important factor in maintaining mitochondrial functions. We found that TMEM179 played a critical role in mediating the neurotoxic effects of arsenic and the protective role of NAC. PKCß is a downstream factor through which TMEM179 regulates the expression of apoptosis-related proteins. This study improves our understanding of the neurotoxic effects and mechanisms of arsenic exposure and the protective effects of NAC. It also identifies a potential molecular target, TMEM179, for the treatment of arsenic-induced neurotoxicity.


Assuntos
Acetilcisteína , Arsênio , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Animais , Apoptose , Arsênio/metabolismo , Arsênio/toxicidade , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
10.
FASEB J ; 33(11): 11870-11883, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31366243

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent diseases worldwide. Exercise is a first-line therapy and an important preventive measure for patients with NAFLD, but the underlying mechanisms are not clear. C57BL/6 mice were fed a high-fat diet (HFD) and subjected to 12 wk swimming exercise. Exercise protected against hepatic lipid accumulation and alleviated hepatocyte damage in HFD mice. Tandem mass tag-based quantitative proteomic analyses and ingenuity pathway analysis revealed that exercise down-regulated fatty acid-binding protein (FABP)1 signaling pathway, which was most closely associated with lipid metabolism. Moreover, exercise significantly decreased FABP1 expression, and liver-specific overexpression of FABP1 abolished the protective effect of exercise in NAFLD mice. Specifically, exercise significantly increased autophagic flux via restoring lysosomal function, including lysosomal proteolysis and lysosomal acidification maintenance, contributing to enhancement in autophagic clearance and subsequently alleviation of hepatic steatosis. Conversely, Fabp1 overexpression in the mouse liver blocked the protective effect of exercise via inhibiting autophagy flux. The present study identified FABP1 inhibition-mediated replenishment of the autophagy-lysosomal machinery as a novel endogenous mechanism whereby long-term exercise improves lipid homeostasis and ameliorates hepatic steatosis in NAFLD.-Pi, H., Liu, M., Xi, Y., Chen, M., Tian, L., Xie, J., Chen, M., Wang, Z., Yang, M., Yu, Z., Zhou, Z., Gao, F. Long-term exercise prevents hepatic steatosis: a novel role of FABP1 in regulation of autophagy-lysosomal machinery.


Assuntos
Autofagia/fisiologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado Gorduroso/prevenção & controle , Lisossomos/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteômica/métodos , Natação/fisiologia , Fatores de Tempo
11.
J Cell Mol Med ; 23(8): 5259-5269, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31119852

RESUMO

The formation of fat-laden foam cells, which contributes to the fatty streaks in the plaques of atheromas, is an important process in atherosclerosis. Vascular smooth muscle cells (VSMCs) are a critical origin of foam cells. However, the mechanisms that underlie VSMC foam cell formation are not yet completely understood. Here, we demonstrated that oxidized low-density lipoprotein (oxLDL) inhibited lipophagy by suppressing lipid droplet (LD)-lysosome fusion and increased VSMC foam cell formation. Moreover, although oxLDL treatment inhibited lysosomal biogenesis, it had no significant effect on lysosomal proteolysis and lysosomal pH. Notably, through TMT-based quantitative proteomic analysis and database searching, 94 differentially expressed proteins were identified, of which 54 were increased and 40 were decreased in the oxLDL group compared with those in the control group. Subsequently, SCD1, a protein of interest, was further investigated. SCD1 levels in the VSMCs were down-regulated by exposure to oxLDL in a time-dependent manner and the interaction between SCD1 and LDs was also disrupted by oxLDL. Importantly, SCD1 overexpression enhanced LD-lysosome fusion, increased lysosomal biogenesis and inhibited VSMC foam cell formation by activating TFEB nuclear translocation and its reporter activity. Modulation of the SCD1/TFEB-mediated lipophagy machinery may offer novel therapeutic approaches for the treatment of atherosclerosis.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lipoproteínas LDL/farmacologia , Proteômica , Estearoil-CoA Dessaturase/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Autofagia/genética , Células Cultivadas , Células Espumosas/metabolismo , Células Espumosas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Lipoproteínas LDL/genética , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estearoil-CoA Dessaturase/metabolismo
12.
J Pineal Res ; 67(3): e12596, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31332839

RESUMO

Trimethyltin chloride (TMT) is a potent neurotoxin that causes neuroinflammation and neuronal cell death. Melatonin is a well-known anti-inflammatory agent with significant neuroprotective activity. Male C57BL/6J mice were intraperitoneally injected with a single dose of melatonin (10 mg/kg) before exposure to TMT (2.8 mg/kg, ip). Thereafter, the mice received melatonin (10 mg/kg, ip) once a day for another three consecutive days. Melatonin dramatically alleviated TMT-induced neurotoxicity in mice by attenuating hippocampal neuron loss, inhibiting epilepsy-like seizures, and ameliorating memory deficits. Moreover, melatonin markedly suppressed TMT-induced neuroinflammatory responses and astrocyte activation, as shown by a decrease in inflammatory cytokine production as well as the downregulation of neurotoxic reactive astrocyte phenotype markers. Mechanistically, serine peptidase inhibitor clade A member 3N (SERPINA3N) was identified as playing a central role in the protective effects of melatonin based on quantitative proteome and bioinformatics analysis. Most importantly, melatonin significantly suppressed TMT-induced SERPINA3N upregulation at both the mRNA and protein levels. The overexpression of Serpina3n in the mouse hippocampus abolished the protective effects of melatonin on TMT-induced neuroinflammation and neurotoxicity. Melatonin protected cells against TMT-induced neurotoxicity by inhibiting SERPINA3N-mediated neuroinflammation. Melatonin may be a promising and practical agent for reducing TMT-induced neurotoxicity in clinical practice.


Assuntos
Proteínas de Fase Aguda/metabolismo , Melatonina/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Serpinas/metabolismo , Compostos de Trimetilestanho/toxicidade , Proteínas de Fase Aguda/genética , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Serpinas/genética
13.
J Pineal Res ; 64(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29149494

RESUMO

Autophagy modulation is a potential therapeutic strategy for tongue squamous cell carcinoma (TSCC). Melatonin possesses significant anticarcinogenic activity. However, whether melatonin induces autophagy and its roles in cell death in TSCC are unclear. Herein, we show that melatonin induced significant apoptosis in the TSCC cell line Cal27. Apart from the induction of apoptosis, we demonstrated that melatonin-induced autophagic flux in Cal27 cells as evidenced by the formation of GFP-LC3 puncta, and the upregulation of LC3-II and downregulation of SQSTM1/P62. Moreover, pharmacological or genetic blockage of autophagy enhanced melatonin-induced apoptosis, indicating a cytoprotective role of autophagy in melatonin-treated Cal27 cells. Mechanistically, melatonin induced TFE3(Ser321) dephosphorylation, subsequently activated TFE3 nuclear translocation, and increased TFE3 reporter activity, which contributed to the expression of autophagy-related genes and lysosomal biogenesis. Luzindole, a melatonin membrane receptor blocker, or MT2-siRNA partially blocked the ability of melatonin to promote mTORC1/TFE3 signaling. Furthermore, we verified in a xenograft mouse model that melatonin with hydroxychloroquine or TFE3-siRNA exerted a synergistic antitumor effect by inhibiting autophagy. Importantly, TFE3 expression positively correlated with TSCC development and poor prognosis in patients. Collectively, we demonstrated that the melatonin-induced increase in TFE3-dependent autophagy is mediated through the melatonin membrane receptor in TSCC. These data also suggest that blocking melatonin membrane receptor-TFE3-dependent autophagy to enhance the activity of melatonin warrants further attention as a treatment strategy for TSCC.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Melatonina/farmacologia , Neoplasias da Língua/patologia , Adulto , Idoso , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cell Physiol Biochem ; 40(3-4): 633-643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27898410

RESUMO

BACKGROUND: Cadmium is a widespread environmental and occupational pollutant that accumulates in human body with a biological half-life exceeding 10 years. Cadmium exposure has been demonstrated to increase rates of cardiovascular diseases. Whether occupational cadmium exposure is associated with the increase in the prevalence of dyslipidemia and hence contributes to the risk of cardiovascular diseases is still equivocal. To test the hypothesis that exposure to cadmium is related to the prevalence of dyslipidemia, we examined the associations between blood cadmium concentration and the prevalence of dyslipidemia in workers occupationally exposed to cadmium in China. METHODS: A cross-sectional survey on demographic data, blood cadmium level and lipid profile in cadmium exposed workers from seven cadmium smelting factories in central and southwestern China was conducted. We measured blood cadmium concentration and lipid components of 1489 cadmium exposed workers. The prevalence of dyslipidemia was compared across blood cadmium quartiles. Associations between the blood cadmium concentrations and the prevalence of dyslipidemia were assessed using confounder adjusted linear and logistic regressions. RESULTS: The blood cadmium concentration was 3.61±0.84µg/L ( mean ±SD). The prevalence of dyslipidemia in this occupational population was 66.3%. Mean blood cadmium concentration of workers with dyslipedemia was significantly higher than that of workers without dyslipidemia (p <0.01). The prevalence of dyslipidemia increased dose-dependently with elevations in blood cadmium concentrations (p for trend <0.001). Elevated levels of blood cadmium were associated with BMI, education attainment, income, smoking status and duration of exposure (all p <0.01). Furthermore, the profile of blood lipid was obviously changed in this occupational population. The prevalence of high TC, high TG, Low HDL-C and high LDL-C rose with increases in blood cadmium levels dose-dependently (p for trend <0.001). The odds ratios (95% confidence interval) for dyslipidemia across the increasing blood cadmium quartiles were 1.21(1.16-1.55), 1.56(1.11-1.87), 1.79(1.26-2.25) respectively (referencing to 1.00; p for trend <0.001), after multivariate adjustment for BMI, education attainment, income, lifestyle factors and duration of exposure, the association between blood cadmium concentrations and the prevalence of dyslipidemia remained unchanged (all p for trend <0.001). CONCLUSION: Elevated blood cadmium concentration is associated with prevalence of dyslipidemia. Cadmium exposure could alter lipid metabolism in humans. It is imperative to control cadmium exposure of occupational population in cadmium related industries and reduce adverse health effects.


Assuntos
Cádmio/sangue , Dislipidemias/sangue , Dislipidemias/epidemiologia , Exposição Ocupacional/estatística & dados numéricos , Adulto , Feminino , Humanos , Lipídeos/sangue , Masculino , Análise Multivariada , Razão de Chances , Prevalência
15.
J Pineal Res ; 61(3): 353-69, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27396692

RESUMO

Cadmium (Cd), a highly ubiquitous heavy metal, induces neurotoxicity. Melatonin, a major secretory product of the pineal gland, protects against Cd-induced neurotoxicity. However, the mechanism that accounts for this protection remains to be elucidated. Herein, we exposed mouse neuroblastoma cells (Neuro-2a cells) to different concentrations of cadmium chloride (CdCl2 ) (12.5, 25, and 50 µ mol L(-1) ) for 24 hours. We showed that Cd inhibits autophagosome-lysosome fusion and impairs lysosomal function, subsequently leading to nerve cell death. In addition, Cd decreases the level of transcription factor EB (TFEB) but induces the nuclear translocation of TFEB, associated with compromised lysosomal function or a compensatory effect after the impairment of the autophagic flux. Moreover, compared to the 50-µ mol L(-1) Cd group, administration of 1 µ mol L(-1) melatonin increased "TFEB-responsive genes" (P<.05) and the levels of lysosomal-associated membrane protein (0.57±0.06 vs 1.00±0.11, P<.05), preserved lysosomal protease activity (0.52±0.01 vs 0.90±0.02, P<.05), maintained the lysosomal pH level (0.50±0.01 vs 0.87±0.05, P<.01), and enhanced autophagosome-lysosome fusion (0.05±0.00 vs 0.21±0.01, P<.01). Notably, melatonin enhanced TFEB expression (0.37±0.04 vs 0.72±0.07, P<.05) and nuclear translocation (2.81±0.08 vs 3.82±0.05, P<.05). Tfeb siRNA blocked the melatonin-mediated elevation in autophagy-lysosome machinery in Cd-induced neurotoxicity (P<.01). Taken together, these results uncover a potent role for TFEB-mediated autophagy in the pathogenesis of Cd-induced neurotoxicity, suggesting that control of the autophagic pathway by melatonin might provide an important clue for exploring potential targets for novel therapeutics of Cd-induced neurotoxicity.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Cloreto de Cádmio/toxicidade , Núcleo Celular/metabolismo , Lisossomos/metabolismo , Melatonina/farmacologia , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Cádmio/toxicidade , Linhagem Celular Tumoral , Núcleo Celular/patologia , Camundongos , Neuroblastoma/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia
16.
J Pineal Res ; 60(3): 291-302, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26732476

RESUMO

Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 µM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.


Assuntos
Cádmio/toxicidade , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Dinaminas/metabolismo , Melatonina/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurotoxinas/toxicidade , Ativação Transcricional/efeitos dos fármacos , Animais , Córtex Cerebral/patologia , Mitocôndrias/patologia , Neurônios/patologia , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
17.
Toxicol Appl Pharmacol ; 286(2): 80-91, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840356

RESUMO

With application of nano-sized nickel-containing particles (Nano-Ni) expanding, the health concerns about their adverse effects on the pulmonary system are increasing. However, the mechanisms for the pulmonary toxicity of these materials remain unclear. In the present study, we focused on the impacts of NiO nanoparticles (NiONPs) on sirtuin1 (SIRT1), a NAD-dependent deacetylase, and investigated whether SIRT1 was involved in NiONPs-induced apoptosis. Although the NiONPs tended to agglomerate in fluid medium, they still entered into the human bronchial epithelial cells (BEAS-2B) and released Ni(2+) inside the cells. NiONPs at doses of 5, 10, and 20µg/cm(2) inhibited the cell viability. NiONPs' produced cytotoxicity was demonstrated through an apoptotic process, indicated by increased numbers of Annexin V positive cells and caspase-3 activation. The expression of SIRT1 was markedly down-regulated by the NiONPs, accompanied by the hyperacetylation of p53 (tumor protein 53) and overexpression of Bax (Bcl-2-associated X protein). However, overexpression of SIRT1 through resveratrol treatment or transfection clearly attenuated the NiONPs-induced apoptosis and activation of p53 and Bax. Our results suggest that the repression of SIRT1 may underlie the NiONPs-induced apoptosis via p53 hyperacetylation and subsequent Bax activation. Because SIRT1 participates in multiple biologic processes by deacetylation of dozens of substrates, this knowledge of the impact of NiONPs on SIRT1 may lead to an improved understanding of the toxic mechanisms of Nano-Ni and provide a molecular target to antagonize Nano-Ni toxicity.


Assuntos
Apoptose/efeitos dos fármacos , Brônquios/metabolismo , Células Epiteliais/metabolismo , Nanopartículas/toxicidade , Níquel/toxicidade , Sirtuína 1/antagonistas & inibidores , Brônquios/citologia , Brônquios/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Nanopartículas/metabolismo , Níquel/metabolismo , Sirtuína 1/genética
18.
Sci Total Environ ; 934: 173119, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750743

RESUMO

Paraquat (PQ) is a broad-spectrum herbicide used worldwide and is a hazardous chemical to human health. Cumulative evidence strengthens the association between PQ exposure and the development of Parkinson's disease (PD). However, the underlying mechanism and effective interventions against PQ-induced neurotoxicity remain unclear. In this study, C57BL/6 J mice were treated with PQ (i.p., 10 mg/kg, twice a week) and melatonin (i.g., 20 mg/kg, twice a week) for 8 weeks. Results showed that PQ-induced motor deficits and midbrain dopaminergic neuronal damage in C57BL/6 J mice were protected by melatonin pretreatment. In isolated primary midbrain neurons and SK-N-SH cells, reduction of cell viability, elevation of total ROS levels, axonal mitochondrial transport defects and mitochondrial dysfunction caused by PQ were attenuated by melatonin. After screening of expression of main motors driving axonal mitochondrial transport, data showed that PQ-decreased KIF5A expression in mice midbrain and in SK-N-SH cell was antagonized by melatonin. Using the in vitro KIF5A-overexpression model, it was found that KIF5A overexpression inhibited PQ-caused neurotoxicity and mitochondrial dysfunction in SK-N-SH cells. In addition, application of MTNR1B (MT2) receptor antagonist, 4-P-PDOT, significantly counteracted the protection of melatonin against PQ-induced neurotoxicity. Further, Kif5a-knockdown diminished melatonin-induced alleviation of motor deficits and neuronal damage against PQ in C57BL/6 J mice. The present study establishes a causal link between environmental neurotoxicants exposure and PD etiology and provides effective interventive targets in the pathogenesis of PD.


Assuntos
Cinesinas , Melatonina , Mesencéfalo , Camundongos Endogâmicos C57BL , Mitocôndrias , Paraquat , Paraquat/toxicidade , Animais , Melatonina/farmacologia , Camundongos , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Cinesinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Herbicidas/toxicidade , Neurônios/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Transporte Axonal/efeitos dos fármacos
19.
Sci Total Environ ; 918: 170773, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38336054

RESUMO

Cadmium (Cd) exposure is known to enhance breast cancer (BC) progression. Cd promotes epithelial-mesenchymal transition (EMT) in BC cells, facilitating BC cell aggressiveness and invasion, but the underlying molecular mechanisms are unclear. Hence, transgenic MMTV-Erbb2 mice (6 weeks) were orally administered Cd (3.6 mg/L, approximately equal to 19.64 µΜ) for 23 weeks, and BC cells (BT474 cells) were exposed to Cd (0, 0.1, 1 or 10 µΜ) for 72 h to investigate the effect of Cd exposure on EMT in BC cells. Chronic Cd exposure dramatically expedited tumor metastasis to multiple organs; decreased E-cadherin density; and increased Vimentin, N-cadherin, ZEB1, and Twist density in the tumor tissues of MMTV-Erbb2 mice. Notably, transcriptomic analysis of BC tumors revealed cytochrome P450 1B1 (CYP1B1) as a key factor that regulates EMT progression in Cd-treated MMTV-Erbb2 mice. Moreover, Cd increased CYP1B1 expression in MMTV-Erbb2 mouse BC tumors and in BT474 cells, and CYP1B1 inhibition decreased Cd-induced BC cell malignancy and EMT in BT474 cells. Importantly, the promotion of EMT by CYP1B1 in Cd-treated BC cells was presumably controlled by glutamine metabolism. This study offers novel perspectives into the effect of environmental Cd exposure on driving BC progression and metastasis, and this study provides important guidance for comprehensively assessing the ecological and health risks of Cd.


Assuntos
Cádmio , Neoplasias , Camundongos , Animais , Cádmio/farmacologia , Linhagem Celular Tumoral , Glutamina/metabolismo , Glutamina/farmacologia , Reprogramação Metabólica , Transição Epitelial-Mesenquimal , Caderinas/genética , Caderinas/metabolismo , Caderinas/farmacologia
20.
Adv Sci (Weinh) ; : e2402030, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837686

RESUMO

Cadmium (Cd) is a neurotoxic contaminant that induces cognitive decline similar to that observed in Alzheimer's disease (AD). Autophagic flux dysfunction is attributed to the pathogenesis of AD, and this study aimed to investigate the effect of autophagy on environmental Cd-induced AD progression and the underlying mechanism. Here, Cd exposure inhibited autophagosome-lysosome fusion and impaired lysosomal function, leading to defects in autophagic clearance and then to APP accumulation and nerve cell death. Proteomic analysis coupled with Ingenuity Pathway Analysis (IPA) identified SIRT5 as an essential molecular target in Cd-impaired autophagic flux. Mechanistically, Cd exposure hampered the expression of SIRT5, thus increasing the succinylation of RAB7A at lysine 31 and inhibiting RAB7A activity, which contributed to autophagic flux blockade. Importantly, SIRT5 overexpression led to the restoration of autophagic flux blockade, the alleviation of Aß deposition and memory deficits, and the desuccinylation of RAB7A in Cd-exposed FAD4T mice. Additionally, SIRT5 levels decrease mainly in neurons but not in other cell clusters in the brains of AD patients according to single-nucleus RNA sequencing data from the public dataset GSE188545. This study reveals that SIRT5-catalysed RAB7A desuccinylation is an essential adaptive mechanism for the amelioration of Cd-induced autophagic flux blockade and AD-like pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA