Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887407

RESUMO

The urgent need to develop a detection system for Staphylococcus aureus, one of the most common causes of infection, is prompting research towards novel approaches and devices, with a particular focus on point-of-care analysis. Biosensors are promising systems to achieve this aim. We coupled the selectivity and affinity of aptamers, short nucleic acids sequences able to recognize specific epitopes on bacterial surface, immobilized at high density on a nanostructured zirconium dioxide surface, with the rational design of specifically interacting fluorescent peptides to assemble an easy-to-use detection device. We show that the displacement of fluorescent peptides upon the competitive binding of S. aureus to immobilized aptamers can be detected and quantified through fluorescence loss. This approach could be also applied to the detection of other bacterial species once aptamers interacting with specific antigens will be identified, allowing the development of a platform for easy detection of a pathogen without requiring access to a healthcare environment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Staphylococcus aureus , Peptídeos , Staphylococcus aureus/isolamento & purificação
2.
Pharm Res ; 34(7): 1477-1490, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28508122

RESUMO

PURPOSE: Because of the evolutionary loss of the uricolytic pathway, humans accumulate poorly soluble urate as the final product of purine catabolism. Restoration of uricolysis through enzyme therapy is a promising treatment for severe hyperuricemia caused by deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT). To this end, we studied the effect of PEG conjugation on the activity and stability of the enzymatic complement required for conversion of urate into the more soluble (S)-allantoin. METHODS: We produced in recombinant form three zebrafish enzymes required in the uricolytic pathway. We carried out a systematic study of the effect of PEGylation on the function and stability of the three enzymes by varying PEG length, chemistry and degree of conjugation. We assayed in vitro the uricolytic activity of the PEGylated enzymatic triad. RESULTS: We defined conditions that allow PEGylated enzymes to retain native-like enzymatic activity even after lyophilization or prolonged storage. A combination of the three enzymes in an appropriate ratio allowed efficient conversion of urate to (S)-allantoin with no accumulation of intermediate metabolites. CONCLUSIONS: Pharmaceutical restoration of the uricolytic pathway is a viable approach for the treatment of severe hyperuricemia.


Assuntos
Amidoidrolases/química , Carboxiliases/química , Hipoxantina Fosforribosiltransferase/deficiência , Síndrome de Lesch-Nyhan/tratamento farmacológico , Polietilenoglicóis/química , Urato Oxidase/química , Uricosúricos/química , Alantoína/química , Animais , Terapia Enzimática , Humanos , Hiperuricemia/tratamento farmacológico , Peso Molecular , Proteínas Recombinantes/química , Solubilidade , Estereoisomerismo , Ácido Úrico/química , Peixe-Zebra
3.
Biochim Biophys Acta ; 1844(12): 2108-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25220806

RESUMO

The Maf protein family belongs to the activator protein 1 (AP-1) superfamily of transcription factors that bind specific DNA target sequences through a basic region and exploit a leucine zipper (LZ) motif for protein-protein interactions leading to homo- or hetero-dimerization. Mafs unique DNA-binding domain contains a highly conserved extended homology region (EHR) that allows to recognize longer DNA sequences than other basic leucine zipper (bZIP) transcription factors. Inspired by the fact that overexpression of Mafs is observed in about 50% of cases of multiple myeloma, a hematological malignant disorder, we undertook a peptide inhibitor approach. The LZ domain of c-Maf, one of large Mafs, was produced by solid phase peptide synthesis. We characterized its secondary structure and dimerization properties, and found that dimerization and folding events are strictly coupled. Moreover, potential peptidic c-Maf dimerization inhibitors were computationally designed and synthesized. These compounds were demonstrated by circular dichroism (CD) spectroscopy and MALDI-TOF mass spectrometry to bind to c-Maf LZ monomers, to drive folding of their partially disordered structure and to efficiently compete with dimerization, suggesting a way for interfering with the function of c-Maf and, more generally, of intrinsically disordered proteins, till now considered undruggable targets.

4.
J Org Chem ; 80(21): 10939-54, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26473465

RESUMO

A small library of six polarity-sensitive fluorescent dyes, nicknamed MediaChrom, was prepared. This class of dyes is characterized by a pyrimidoindolone core fitted out with a conjugated push-pull system and a carboxy linker for a conceivable coupling with biomolecules. The optimized eight-step synthetic strategy involves a highly chemo- and regioselective gold-catalyzed cycloisomerization reaction. The photophysical properties of MediaChrom dyes have been evaluated in-depth. In particular, the MediaChrom bearing a diethylamino as an electron-donating group and a trifluoromethyl as an electron-withdrawing group displays the most interesting and advantageous spectroscopic features (e.g., absorption and emission in the visible range and a good quantum yield). Promising results in terms of sensitivity have been obtained in vitro on this dye as a membrane/lipophilic probe and as a peptide fluorescent label.


Assuntos
Corantes Fluorescentes/química , Pirimidinonas/química , Catálise , Eletroquímica/métodos , Elétrons , Estrutura Molecular , Teoria Quântica , Espectrometria de Fluorescência
5.
Front Chem ; 9: 707797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381760

RESUMO

In order to use a Hemoglobin Based Oxygen Carrier as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the hemoglobin molecule to prevent rapid renal clearance. A common method uses maleimide PEGylation of sulfhydryls created by the reaction of 2-iminothiolane at surface lysines. However, this creates highly heterogenous mixtures of molecules. We recently engineered a hemoglobin with a single novel, reactive cysteine residue on the surface of the alpha subunit creating a single PEGylation site (ßCys93Ala/αAla19Cys). This enabled homogenous PEGylation by maleimide-PEG with >80% efficiency and no discernible effect on protein function. However, maleimide-PEG adducts are subject to deconjugation via retro-Michael reactions and cross-conjugation to endogenous thiol species in vivo. We therefore compared our maleimide-PEG adduct with one created using a mono-sulfone-PEG less susceptible to deconjugation. Mono-sulfone-PEG underwent reaction at αAla19Cys hemoglobin with > 80% efficiency, although some side reactions were observed at higher PEG:hemoglobin ratios; the adduct bound oxygen with similar affinity and cooperativity as wild type hemoglobin. When directly compared to maleimide-PEG, the mono-sulfone-PEG adduct was significantly more stable when incubated at 37°C for seven days in the presence of 1 mM reduced glutathione. Hemoglobin treated with mono-sulfone-PEG retained > 90% of its conjugation, whereas for maleimide-PEG < 70% of the maleimide-PEG conjugate remained intact. Although maleimide-PEGylation is certainly stable enough for acute therapeutic use as an oxygen therapeutic, for pharmaceuticals intended for longer vascular retention (weeks-months), reagents such as mono-sulfone-PEG may be more appropriate.

6.
Biomater Sci ; 8(14): 3896-3906, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32539053

RESUMO

In order to infuse hemoglobin into the vasculature as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the molecule to enhance vascular retention. This aim can be achieved by PEGylation. However, using non-specific conjugation methods creates heterogenous mixtures and alters protein function. Site-specific PEGylation at the naturally reactive thiol on human hemoglobin (ßCys93) alters hemoglobin oxygen binding affinity and increases its autooxidation rate. In order to avoid this issue, new reactive thiol residues were therefore engineered at sites distant to the heme group and the α/ß dimer/dimer interface. The two mutants were ßCys93Ala/αAla19Cys and ßCys93Ala/ßAla13Cys. Gel electrophoresis, size exclusion chromatography and mass spectrometry revealed efficient PEGylation at both αAla19Cys and ßAla13Cys, with over 80% of the thiols PEGylated in the case of αAla19Cys. For both mutants there was no significant effect on the oxygen affinity or the cooperativity of oxygen binding. PEGylation at αAla19Cys had the additional benefit of decreasing the rates of autoxidation and heme release, properties that have been considered contributory factors to the adverse clinical side effects exhibited by previous hemoglobin based oxygen carriers. PEGylation at αAla19Cys may therefore be a useful component of future clinical products.


Assuntos
Hemoglobinas , Polietilenoglicóis , Cromatografia em Gel , Heme , Humanos , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA