RESUMO
Siglec-9 is a sialic-acid-binding lectin expressed predominantly on myeloid cells. Aberrant glycosylation occurs in essentially all types of cancers and results in increased sialylation. Thus, when the mucin MUC1 is expressed on cancer cells, it is decorated by multiple short, sialylated O-linked glycans (MUC1-ST). Here we found that this cancer-specific MUC1 glycoform, through engagement of Siglec-9, 'educated' myeloid cells to release factors associated with determination of the tumor microenvironment and disease progression. Moreover, MUC1-ST induced macrophages to display a tumor-associated macrophage (TAM)-like phenotype, with increased expression of the checkpoint ligand PD-L1. Binding of MUC1-ST to Siglec-9 did not activate the phosphatases SHP-1 or SHP-2 but, unexpectedly, induced calcium flux that led to activation of the kinases MEK-ERK. This work defines a critical role for aberrantly glycosylated MUC1 and identifies an activating pathway that follows engagement of Siglec-9.
Assuntos
Antígenos CD/metabolismo , Mucina-1/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral/imunologia , Antígenos CD/genética , Biomarcadores , Diferenciação Celular , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Glicosilação , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células Mieloides/citologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Ligação Proteica , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genéticaRESUMO
We read with interest the manuscript by June and colleagues published recently in Immunity in which they describe targeting of aberrantly glycosylated tumor-associated cell membrane mucin MUC1 using chimeric antigen receptor-engineered human T cells (Posey et al., 2016). In that study, the authors used a second generation 4-1BB costimulatory-molecule-based chimeric antigen receptor (CAR) (Imai et al., 2004) in which targeting was achieved using a single-chain variable fragment (scFv) derived from the 5E5 antibody. This CAR selectively binds MUC1 that carries the Tn or sialyl (S)Tn glycan. Both of these truncated glycans are aberrantly expressed on the MUC1 glycoprotein in a spectrum of malignancies and consequently represent attractive targets for immunotherapeutic exploitation.
Assuntos
Mucina-1/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias , Glicosilação , Humanos , Neoplasias/imunologiaRESUMO
The molecular mechanism(s) underlying the enhanced self-interactions of mucins possessing the Tn (GalNAcα1-Ser/Thr) or STn (NeuNAcα2-6GalNAcα1-Ser/Thr) cancer markers were investigated using optical tweezers (OT). The mucins examined included modified porcine submaxillary mucin containing the Tn epitope (Tn-PSM), ovine submaxillary mucin with the STn epitope (STn-OSM), and recombinant MUC1 analogs with either the Tn and STn epitope. OT experiments in which the mucins were immobilized onto polystyrene beads revealed identical self-interaction characteristics for all mucins. Identical binding strength and energy landscape characteristics were also observed for synthetic polymers displaying multiple GalNAc decorations. Polystyrene beads without immobilized mucins showed no self-interactions and also no interactions with mucin-decorated polystyrene beads. Taken together, the experimental data suggest that in these molecules, the GalNAc residue mediates interactions independent of the anchoring polymer backbone. Furthermore, GalNAc-GalNAc interactions appear to be responsible for self-interactions of mucins decorated with the STn epitope. Hence, Tn-MUC1 and STn-MUC1 undergo self-interactions mediated by the GalNAc residue in both epitopes, suggesting a possible molecular role in cancer. MUC1 possessing the T (Galß1-3GalNAcα1-Ser/Thr) or ST antigen (NeuNAcα2-3Galß1-3GalNAcα1-Ser/Thr) failed to show self-interactions. However, in the case of ST-MUC1, self-interactions were observed after subsequent treatment with neuraminidase and ß-galactosidase. This enzymatic treatment is expected to introduce Tn-epitopes and these observations thus further strengthen the conclusion that the observed interactions are mediated by the GalNAc groups.
Assuntos
Acetilgalactosamina/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Mucina-1/metabolismo , Mucinas/metabolismo , Animais , Bovinos , Humanos , SuínosRESUMO
DCs are the most potent APCs and are the focus of many immunotherapeutic approaches for the treatment of cancer, although most of these approaches require the ex vivo generation and pulsing of DCs. We have targeted a subset of DCs in vivo using an Ab to DNGR-1, a C-type lectin dedicated to the cross-presentation of Ag expressed by subsets of DCs. HLA-A2 epitopes from the tumour-associated Ag, MUC1, were coupled to the anti-DNGR-1 Ab, and their efficacy in generating a Th1-cell response and inhibiting tumour growth was evaluated in a clinically relevant double transgenic mouse model expressing human MUC1 and A2K/b. Using this strategy, we demonstrate that an effective immune response to MUC1 can be generated, which results in a significant delay in the growth of MUC1-expressing tumours in both prophylactic and therapeutic settings. In addition, we also show, using PBMCs isolated from healthy volunteer blood, that target an MUC1 HLA-A2 epitope to human DNGR-1 in vitro can induce an MUC1-specific CD8(+) -T-cell response, which confirms the relevance of our in vivo murine results in the human setting.
Assuntos
Anticorpos/imunologia , Vacinas Anticâncer/imunologia , Lectinas Tipo C/imunologia , Mucina-1/imunologia , Receptores Mitogênicos/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a)) and Sialyl-Le(x) (SLe(x)) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla of Vater, colon, lung, breast and ovary) to detect specific mucin glycoforms. We detected Tn/STn/SLe(a)/SLe(x)-MUC1 and STn/SLe(a)/SLe(x)-MUC2 glycoforms in ≥50% of the cases, with a variable distribution among organs. Some new glycoforms-T/SLe(a)-MUC2, STn/T/SLe(a) SLe(x)-MUC5AC and STn/T/SLe(a)/SLe(x)-MUC6-were identified for the first time in the present study in a variable percentage of cases from different organs. In conclusion, application of the PLA technique allowed sensitive detection of specific aberrant mucin glycoforms in cancer, increasing specificity to the use of antibodies either to the mucin protein backbone or to the O-glycan haptens alone.
Assuntos
Biomarcadores Tumorais/análise , Mucina-5AC/análise , Mucina-1/análise , Mucina-2/análise , Mucina-6/análise , Neoplasias/diagnóstico , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patologia , Antígenos Glicosídicos Associados a Tumores/análise , Antígenos Glicosídicos Associados a Tumores/metabolismo , Mama/patologia , Antígeno CA-19-9 , Colo/patologia , Imunofluorescência , Gangliosídeos/análise , Gangliosídeos/metabolismo , Glicosilação , Humanos , Imuno-Histoquímica , Pulmão/patologia , Neoplasias/patologia , Oligossacarídeos/análise , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis XRESUMO
Changes in glycosylation are common in malignancy, and as almost all surface proteins are glycosylated, this can dramatically affect the behavior of tumor cells. In breast carcinomas, the O-linked glycans are frequently truncated, often as a result of premature sialylation. The sialyltransferase ST3Gal-I adds sialic acid to the galactose residue of core 1 (Galbeta1,3GalNAc) O-glycans and this enzyme is over-expressed in breast cancer resulting in the expression of sialylated core 1 glycans. In order to study the role of ST3Gal-I in mammary tumor development, we developed transgenic mice that over-express the sialyltransferase under the control of the human membrane-bound mucin 1 promoter. These mice were then crossed with PyMT mice that spontaneously develop mammary tumors. As expected, ST3Gal-I transgenic mice showed increased activity and expression of the enzyme in the pregnant and lactating mammary glands, the stomach, lungs and intestine. Although no obvious defects were observed in the fully developed mammary gland, when these mice were crossed with PyMT mice, a highly significant decrease in tumor latency was observed compared to the PyMT mice on an identical background. These results indicate that ST3Gal-I is acting as a tumor promoter in this model of breast cancer. This, we believe, is the first demonstration that over-expression of a glycosyltransferase involved in mucin-type O-linked glycosylation can promote tumorigenesis.
Assuntos
Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Sialiltransferases/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/genética , Western Blotting , Feminino , Galactose/metabolismo , Glicosilação , Humanos , Imunoprecipitação , Lactação/metabolismo , Glândulas Mamárias Animais/enzimologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucina-1/genética , Ácido N-Acetilneuramínico/metabolismo , Gravidez , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialiltransferases/genética , beta-Galactosídeo alfa-2,3-SialiltransferaseRESUMO
The type of interaction between tumor-associated antigens and specialized antigen-presenting cells such as dendritic cells (DCs) is critical for the type of immunity that will be generated. MUC1, a highly O-glycosylated mucin, is overexpressed and aberrantly glycosylated in several tumor histotypes. This results in the expression of tumor-associated glycoforms and in MUC1 carrying the tumor-specific glycan Tn (GalNAcalpha1-O-Ser/Thr). Glycopeptides corresponding to three tandem repeats of MUC1, enzymatically glycosylated with 9 or 15 mol of GalNAc, were shown to specifically bind and to be internalized by immature monocyte-derived DCs (iDCs). Binding required calcium and the GalNAc residue and was competed out by GalNAc polymer and Tn-MUC1 or Tn-MUC2 glycopeptides. The macrophage galactose-type C-type lectin (MGL) receptor expressed on iDCs was shown to be responsible for the binding. Confocal analysis and ELISA done on subcellular fractions of iDCs showed that the Tn-MUC1 glycopeptides colocalized with HLA class I and II compartments after internalization. Importantly, although Tn-MUC1 recombinant protein was bound and internalized by MGL, the glycoprotein entered the HLA class II compartment, but not the HLA class I pathway. These data indicate that MGL expressed on iDCs is an optimal receptor for the internalization of short GalNAcs carrying immunogens to be delivered into HLA class I and II compartments. Such glycopeptides therefore represent a new way of targeting the HLA class I and II pathways of DCs. These results have possible implications in designing cancer vaccines.
Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Lectinas Tipo C/metabolismo , Mucina-1/metabolismo , Antígenos Glicosídicos Associados a Tumores/química , Células Cultivadas , Endocitose/imunologia , Glicosilação , Humanos , Células K562 , Mucina-1/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.pone.0175323.].
RESUMO
Carbohydrate-protein interactions govern many crucial processes in biological systems including cell recognition events. We have used the sensitive force probe optical tweezers to quantify the interactions occurring between MGL lectins and MUC1 carrying the cancer-associated glycan antigens mucins Tn and STn. Unbinding forces of 7.6 pN and 7.1 pN were determined for the MUC1(Tn)-MGL and MUC1(STn)-MGL interactions, at a force loading rate of ~40 pN/s. The interaction strength increased with increasing force loading rate, to 27 and 37 pN at a force loading rate of ~ 310 pN/s. No interactions were detected between MGL and MUC1(ST), a glycoform of MUC1 also expressed by breast carcinoma cells. Interestingly, this glycan (ST) can be found on proteins expressed by normal cells, although in this case not on MUC1. Additionally, GalNAc decorated polyethylene glycol displayed similar rupture forces as observed for MUC1(Tn) and MUC1(STn) when forced to unbind from MGL, indicating that GalNAc is an essential group in these interactions. Since the STn glycan decoration is more frequently found on the surface of carcinomas than the Tn glycan, the binding of MUC1 carrying STn to MGL may be more physiologically relevant and may be in part responsible for some of the characteristics of STn expressing tumours.
Assuntos
Neoplasias da Mama/metabolismo , Lectinas Tipo C/metabolismo , Mucina-1/metabolismo , Animais , Antígenos Glicosídicos Associados a Tumores/metabolismo , Células CHO , Carboidratos , Linhagem Celular , Cricetulus , Feminino , Humanos , Pinças Ópticas , Polissacarídeos/metabolismoRESUMO
We have developed an expression system for the production of large quantities of recombinant MUC1 mucin in CHO-K1 (Chinese-hamster ovary K1) cells. The extracellular part of human MUC1, including 16 MUC1 tandem repeats, was produced as a fusion protein with murine IgG Fc, with an intervening enterokinase cleavage site for the removal of the Fc tail. Stable MUC1-IgG-producing CHO-K1 clones were generated and were found to secrete MUC1-IgG into the culture medium. After adaptation to suspension culture in protein-free medium in a bioreactor, the fusion protein was secreted in large quantities (100 mg/l per day) into the culture supernatant. From there, MUC1 could be purified to homogeneity using a two-step procedure including enterokinase cleavage and ion-exchange chromatography. Capillary liquid chromatography MS of released oligosaccharides from CHO-K1-produced MUC1 identified the main O-glycans as Galbeta1-3GalNAc (core 1) and mono- and di-sialylated core 1. The glycans occupied on average 4.3 of the five potential O-glycosylation sites in the tandem repeats, as determined by nano-liquid chromatography MS of partially deglycosylated Clostripain-digested protein. A very similar O-glycan profile and site occupancy was found in MUC1-IgG produced in the breast carcinoma cell line T47D, which has O-glycosylation typical for breast cancer. In contrast, MUC1-IgG produced in another breast cancer cell line, MCF-7, showed a more complex pattern with both core 1- and core 2-based O-glycans. This is the first reported production of large quantities of recombinant MUC1 with a breast cancer-like O-glycosylation that could be used for the immunotherapy of breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Mucina-1/genética , Aminoácidos/análise , Animais , Anticorpos Monoclonais/imunologia , Células CHO , Sequência de Carboidratos , Carcinoma/metabolismo , Linhagem Celular Tumoral , Cricetinae , Feminino , Glicosilação , Humanos , Imunoglobulina G/genética , Dados de Sequência Molecular , Mucina-1/química , Mucina-1/metabolismo , Polissacarídeos/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Aberrant glycosylation occurs in the majority of human cancers and changes in mucin-type O-glycosylation are key events that play a role in the induction of invasion and metastases. These changes generate novel cancer-specific glyco-antigens that can interact with cells of the immune system through carbohydrate binding lectins. Two glyco-epitopes that are found expressed by many carcinomas are Tn (GalNAc-Ser/Thr) and STn (NeuAcα2,6GalNAc-Ser/Thr). These glycans can be carried on many mucin-type glycoproteins including MUC1. We show that the majority of breast cancers carry Tn within the same cell and in close proximity to extended glycan T (Galß1,3GalNAc) the addition of Gal to the GalNAc being catalysed by the T synthase. The presence of active T synthase suggests that loss of the private chaperone for T synthase, COSMC, does not explain the expression of Tn and STn in breast cancer cells. We show that MUC1 carrying both Tn or STn can bind to the C-type lectin MGL and using atomic force microscopy show that they bind to MGL with a similar dead adhesion force. Tumour associated STn is associated with poor prognosis and resistance to chemotherapy in breast carcinomas, inhibition of DC maturation, DC apoptosis and inhibition of NK activity. As engagement of MGL in the absence of TLR triggering may lead to anergy, the binding of MUC1-STn to MGL may be in part responsible for some of the characteristics of STn expressing tumours.
Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Neoplasias da Mama/metabolismo , Lectinas Tipo C/metabolismo , Mucina-1/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Ligação ProteicaRESUMO
The glycome acts as an essential interface between cells and the surrounding microenvironment. However, changes in glycosylation occur in nearly all breast cancers, which can alter this interaction. Here, we report that profiles of glycosylation vary between ER-positive and ER-negative breast cancers. We found that genes involved in the synthesis of sialyl-Lewis x (sLe(x); FUT3, FUT4, and ST3GAL6) are significantly increased in estrogen receptor alpha-negative (ER-negative) tumors compared with ER-positive ones. SLe(x) expression had no influence on the survival of patients whether they had ER-negative or ER-positive tumors. However, high expression of sLe(x) in ER-positive tumors was correlated with metastasis to the bone where sLe(x) receptor E-selectin is constitutively expressed. The ER-positive ZR-75-1 and the ER-negative BT20 cell lines both express sLe(x) but only ZR-75-1 cells could adhere to activated endothelial cells under dynamic flow conditions in a sLe(x) and E-selectin-dependent manner. Moreover, L/P-selectins bound strongly to ER-negative MDA-MB-231 and BT-20 cell lines in a heparan sulfate (HS)-dependent manner that was independent of sLe(x) expression. Expression of glycosylation genes involved in heparan biosynthesis (EXT1 and HS3ST1) was increased in ER-negative tumors. Taken together, our results suggest that the context of sLe(x) expression is important in determining its functional significance and that selectins may promote metastasis in breast cancer through protein-associated sLe(x) and HS glycosaminoglycans.
Assuntos
Neoplasias da Mama/metabolismo , Selectina E/metabolismo , Antígenos CD15/metabolismo , Neoplasias Hormônio-Dependentes/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Selectina E/genética , Feminino , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicômica/métodos , Heparitina Sulfato/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Antígenos CD15/genética , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Metástase Neoplásica , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Antígeno Sialil Lewis X , Sialiltransferases/genética , Sialiltransferases/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , beta-Galactosídeo alfa-2,3-SialiltransferaseRESUMO
MUC1 is a highly attractive immunotherapeutic target owing to increased expression, altered glycosylation, and loss of polarity in >80% of human cancers. To exploit this, we have constructed a panel of chimeric Ag receptors (CAR) that bind selectively to tumor-associated MUC1. Two parameters proved crucial in optimizing the CAR ectodomain. First, we observed that the binding of CAR-grafted T cells to anchored MUC1 is subject to steric hindrance, independent of glycosylation status. This was overcome by insertion of the flexible and elongated hinge found in immunoglobulins of the IgD isotype. Second, CAR function was highly dependent upon strong binding capacity across a broad range of tumor-associated MUC1 glycoforms. This was realized by using an Ab-derived single-chain variable fragment (scFv) cloned from the HMFG2 hybridoma. To optimize CAR signaling, tripartite endodomains were constructed. Ultimately, this iterative design process yielded a potent receptor termed HOX that contains a fused CD28/OX40/CD3zeta endodomain. HOX-expressing T cells proliferate vigorously upon repeated encounter with soluble or membrane-associated MUC1, mediate production of proinflammatory cytokines (IFN-gamma and IL-17), and elicit brisk killing of MUC1(+) tumor cells. To test function in vivo, a tumor xenograft model was derived using MDA-MB-435 cells engineered to coexpress MUC1 and luciferase. Mice bearing an established tumor were treated i.p. with a single dose of engineered T cells. Compared with control mice, this treatment resulted in a significant delay in tumor growth as measured by serial bioluminescence imaging. Together, these data demonstrate for the first time that the near-ubiquitous MUC1 tumor Ag can be targeted using CAR-grafted T cells.