Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 20-35, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38157948

RESUMO

BACKGROUND: Cerebral malaria (CM) is a fatal neuroinflammatory syndrome caused (in humans) by the protozoa Plasmodium (P.) falciparum. Glial cell activation is one of the mechanisms that contributes to neuroinflammation in CM. RESULT: By studying a mouse model of CM (caused by P. berghei ANKA), we describe that the induction of autophagy promoted p21-dependent senescence in astrocytes and that CXCL-10 was part of the senescence-associated secretory phenotype. Furthermore, p21 expression was observed in post-mortem brain and peripheral blood samples from patients with CM. Lastly, we found that the depletion of senescent astrocytes with senolytic drugs abrogated inflammation and protected mice from CM. CONCLUSION: Our data provide evidence for a novel mechanism through which astrocytes could be involved in the neuropathophysiology of CM. p21 gene expression in blood cell and an elevated plasma CXCL-10 concentration could be valuable biomarkers of CM in humans. In the end, we believe senolytic drugs shall open up new avenues to develop newer treatment options.


Assuntos
Malária Cerebral , Humanos , Animais , Camundongos , Doenças Neuroinflamatórias , Astrócitos , Senoterapia , Autofagia
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612941

RESUMO

The WHO's global strategy for malaria targets a reduction of at least 90% of both incidence and mortality rates for 2030 [...].


Assuntos
Malária , Humanos , Malária/epidemiologia
3.
J Immunol ; 205(11): 3071-3082, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148715

RESUMO

Malaria is associated with complicated immunopathogenesis. In this study, we provide evidence for an unexpected role of TLR3 in promoting the establishment of Plasmodium yoelii infection through delayed clearance of parasitemia in wild type C57BL/6jRj (B6) compared with TLR3 knockout mice. In this study, we confirmed an increased expression of Tlr3, Trif, Tbk1, and Irf7/Irf3 in the liver 42 h postinfection and the initiation of an early burst of proinflammatory response such as Ifng, NF-kB, and Tnfa in B6 mice that may promote parasite fitness. Interestingly, in the absence of TLR3, we showed the involvement of high IFN-γ and lower type I IFN response in the early clearance of parasitemia. In parallel, we observed an increase in splenic NK and NKT cells expressing TLR3 in infected B6 mice, suggesting a role for TLR sensing in the innate immune response. Finally, we find evidence that the increase in the frequency of CD19+TLR3+ B cells along with reduced levels of total IgG in B6 mice possibly suggests the initiation of TLR3-dependent pathway early during P. yoelii infection. Our results thus reveal a new mechanism in which a parasite-activated TLR3 pathway promotes blood stage infection along with quantitative and qualitative differences in Ab responses.


Assuntos
Malária/imunologia , Mamíferos/imunologia , Mamíferos/parasitologia , Plasmodium yoelii/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Linfócitos B/imunologia , Imunidade Inata/imunologia , Imunoglobulina G/imunologia , Inflamação/imunologia , Inflamação/parasitologia , Interferon Tipo I/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/parasitologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/parasitologia , Parasitemia/imunologia , Transdução de Sinais/imunologia , Fator de Necrose Tumoral alfa/imunologia
4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362246

RESUMO

Interleukin-33 (IL-33) is an immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. IL-33 is abundant within the brain and spinal cord tissues where it acts as a key cytokine to coordinate the exchange between the immune and central nervous system (CNS). In this review, we report the recent advances to our knowledge regarding the role of IL-33 and of its receptor ST2 in cerebral malaria, and in particular, we highlight the pivotal role that IL-33/ST2 signaling pathway could play in brain and cerebrospinal barriers permeability. IL-33 serum levels are significantly higher in children with severe Plasmodium falciparum malaria than children without complications or noninfected children. IL-33 levels are correlated with parasite load and strongly decrease with parasite clearance. We postulate that sequestration of infected erythrocytes or merozoites liberation from schizonts could amplify IL-33 production in endothelial cells, contributing either to malaria pathogenesis or recovery.


Assuntos
Malária Cerebral , Malária Falciparum , Criança , Humanos , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Células Endoteliais/metabolismo , Malária Falciparum/parasitologia , Citocinas , Plasmodium falciparum/metabolismo
5.
Genes Immun ; 21(1): 45-62, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501529

RESUMO

Genetic mapping and genome-wide studies provide evidence for the association of several genetic polymorphisms with malaria, a complex pathological disease with multiple severity degrees. We have previously described Berr1and Berr2 as candidate genes identified in the WLA/Pas inbreed mouse strain predisposing to resistance to cerebral malaria (CM) induced by P. berghei ANKA. We report in this study the phenotypic and functional characteristics of a congenic strain we have derived for Berr2WLA allele on the C57BL/6JR (B6) background. B6.WLA-Berr2 was found highly resistant to CM compared to C57BL/6JR susceptible mice. The mechanisms associated with CM resistance were analyzed by combining genotype, transcriptomic and immune response studies. We found that B6.WLA-Berr2 mice showed a reduced parasite sequestration and blood-brain barrier disruption with low CXCR3+ T cell infiltration in the brain along with altered glial cell response upon P. berghei ANKA infection compared to B6. In addition, we have identified the CD300f, belonging to a family of Ig-like encoding genes, as a potential candidate associated with CM resistance. Microglia cells isolated from the brain of infected B6.WLA-Berr2 mice significantly expressed higher level of CD300f compared to CMS mice and were associated with inhibition of inflammatory response.


Assuntos
Malária Cerebral/genética , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Alelos , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Mapeamento Cromossômico , Modelos Animais de Doenças , Resistência à Doença/genética , Resistência à Doença/imunologia , Feminino , Genótipo , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Receptores Imunológicos/genética
6.
Parasite Immunol ; 40(10): e12580, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30102786

RESUMO

B cell-mediated humoral responses are essential for controlling malarial infection. Studies have addressed the effects of Plasmodium falciparum infection on peripheral B-cell subsets but not much is known for P. vivax infection. Furthermore, majority of the studies investigate changes during acute infection, but not after parasite clearance. In this prospective study, we analysed peripheral B-cell profiles and antibody responses during acute P. vivax infection and upon recovery (30 days post-treatment) in a low-transmission area in India. Dengue patients were included as febrile-condition controls. Both dengue and malaria patients showed a transient increase in atypical memory B cells during acute infection. However, transient B cell-activating factor (BAFF)-independent increase in the percentage of total and activated immature B cells was observed in malaria patients. Naïve B cells from malaria patients also showed increased TLR4 expression. Total IgM levels remained unchanged during acute infection but increased significantly at recovery. Serum antibody profiling showed a parasite-specific IgM response that persisted at recovery. A persistent IgM autoantibody response was also observed in malaria but not dengue patients. Our data suggest that in hypoendemic regions acute P. vivax infection skews peripheral B-cell subsets and results in a persistent parasite-specific and autoreactive IgM response.


Assuntos
Anticorpos Antiprotozoários/sangue , Subpopulações de Linfócitos B/imunologia , Imunoglobulina M/sangue , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Adulto , Anticorpos Antiprotozoários/imunologia , Formação de Anticorpos , Fator Ativador de Células B/metabolismo , Feminino , Humanos , Imunoglobulina M/imunologia , Índia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptor 4 Toll-Like/biossíntese
7.
Glia ; 65(1): 75-92, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696532

RESUMO

Astrocytes and microglia are activated during cerebral malaria (CM) and contribute to the production and release of several mediators during neuroinflammatory processes. Whether these changes are the consequence of a direct crosstalk between glial cells and the malarial parasite and how these cells participate in the pathogenesis of CM is not yet clear. We therefore examined the interaction of astrocytes and microglia with Plasmodium berghei ANKA-infected red blood cells using primary cell cultures derived from newborn C57BL/6 mice. We observed a dynamic transfer of vesicles from the parasite to astrocytes within minutes of contact, and the phagocytosis of infected red blood cells by microglia. Differential gene expression studies using the Affymetrix GeneChip® microarray, and quantitative PCR analyses showed the increase in expression of the set of genes belonging to the immune response network in parasite activated astrocytes and microglia. Interestingly, expression of these genes was also significantly upregulated in brains of mice dying from CM compared with uninfected mice or infected mice that did not develop the neuropathology. Accumulation of parasite-derived vesicles within astrocytes, and the phagocytosis of infected red blood cells by microglia induced a subsequent increase in interferon gamma inducible protein 10 (IP10) in both the brain and plasma of infected mice at the onset of CM, confirming a role for this molecule in CM pathogenesis. Altogether, these observations point to a possible role for glial cells in the neuropathological processes leading to CM. GLIA 2016 GLIA 2017;65:75-92.


Assuntos
Astrócitos/parasitologia , Eritrócitos/parasitologia , Malária Cerebral/parasitologia , Microglia/parasitologia , Fagocitose/fisiologia , Animais , Astrócitos/metabolismo , Encéfalo/parasitologia , Encéfalo/patologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Malária Cerebral/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo
8.
Infect Immun ; 84(1): 329-38, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26553468

RESUMO

The role of naturally occurring CD4(+) CD25(+) Foxp3(+) regulatory T cells (nTreg) in the pathogenesis of cerebral malaria (CM), which involves both pathogenic T cell responses and parasite sequestration in the brain, is still unclear. To assess the contribution and dynamics of nTreg during the neuropathogenesis, we unbalanced the ratio between nTreg and naive CD4(+) T cells in an attenuated model of Plasmodium berghei ANKA-induced experimental CM (ECM) by using a selective cell enrichment strategy. We found that nTreg adoptive transfer accelerated the onset and increased the severity of CM in syngeneic C57BL/6 (B6) P. berghei ANKA-infected mice without affecting the level of parasitemia. In contrast, naive CD4(+) T cell enrichment prevented CM and promoted parasite clearance. Furthermore, early during the infection nTreg expanded in the spleen but did not efficiently migrate to the site of neuroinflammation, suggesting that nTreg exert their pathogenic action early in the spleen by suppressing the protective naive CD4(+) T cell response to P. berghei ANKA infection in vivo in both CM-susceptible (B6) and CM-resistant (B6-CD4(-/-)) mice. However, their sole transfer was not sufficient to restore CM susceptibility in two CM-resistant congenic strains tested. Altogether, these results demonstrate that nTreg are activated and functional during P. berghei ANKA infection and that they contribute to the pathogenesis of CM. They further suggest that nTreg may represent an early target for the modulation of the immune response to malaria.


Assuntos
Encéfalo/imunologia , Malária Cerebral/imunologia , Plasmodium berghei/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Encéfalo/citologia , Encéfalo/parasitologia , Antígenos CD4/genética , Antígenos CD4/metabolismo , Movimento Celular/imunologia , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/citologia , Baço/imunologia , Linfócitos T Reguladores/transplante
9.
Brain Behav Immun ; 58: 280-290, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27477919

RESUMO

Cerebral malaria is the deadliest complication of Plasmodium falciparum infection. Its pathophysiology is associated with a strong pro-inflammatory reaction and the activation of glial cells. Among modulators released during the infection, heme seems to play a controversial role in the pathophysiology of malaria. Herein, we first investigated the phenotype of glial cells during cerebral malaria in C57BL/6 mice infected with P. berghei ANKA. Given the fact that high levels of heme were associated with cerebral malaria, we then investigated its impact on microglial, astrocyte, and T cell responses to further clarify its contribution in the neuropathophysiology. Surprisingly, we found that administration of heme twice a day from day three of infection induced the expression of the Heme oxygenase-1 (Hmox1) gene and prevented brain damages. More specifically, heme inhibited the M1 phenotype of microglia, hampered the activation of astrocytes, and decreased the cerebral expression of Ifng, Tnfa and Ip10. Heme might that way alter the migration of pathogenic CD4 and CD8 T lymphocytes within the brain observed during cerebral malaria. Taking into account that cerebral malaria results from a complex interplay between host- and parasite-derived factors, it is possible that genetic polymorphisms of Hmox1, which could be associated with the control of systemic levels of heme during P. falciparum infection, might explain its dual role and its contribution to the resistance to cerebral malaria.


Assuntos
Astrócitos/imunologia , Encéfalo/imunologia , Encéfalo/parasitologia , Heme/metabolismo , Malária Cerebral/imunologia , Microglia/imunologia , Linfócitos T/metabolismo , Animais , Feminino , Heme/administração & dosagem , Heme Oxigenase-1/metabolismo , Encefalite Infecciosa/complicações , Malária Cerebral/complicações , Malária Cerebral/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Plasmodium berghei/patogenicidade , Baço
10.
Infect Immun ; 83(10): 3793-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169278

RESUMO

Several immunomodulatory factors are involved in malaria pathogenesis. Among them, heme has been shown to play a role in the pathophysiology of severe malaria in rodents, but its role in human severe malaria remains unclear. Circulating levels of total heme and its main scavenger, hemopexin, along with cytokine/chemokine levels and biological parameters, including hemoglobin and creatinine levels, as well as transaminase activities, were measured in the plasma of 237 Plasmodium falciparum-infected patients living in the state of Odisha, India, where malaria is endemic. All patients were categorized into well-defined groups of mild malaria, cerebral malaria (CM), or severe noncerebral malaria, which included acute renal failure (ARF) and hepatopathy. Our results show a significant increase in total plasma heme levels with malaria severity, especially for CM and malarial ARF. Spearman rank correlation and canonical correlation analyses have shown a correlation between total heme, hemopexin, interleukin-10, tumor necrosis factor alpha, gamma interferon-induced protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels. In addition, canonical correlations revealed that heme, along with IP-10, was associated with the CM pathophysiology, whereas both IP-10 and MCP-1 together with heme discriminated ARF. Altogether, our data indicate that heme, in association with cytokines and chemokines, is involved in the pathophysiology of both CM and ARF but through different mechanisms.


Assuntos
Heme/metabolismo , Malária Falciparum/sangue , Plasmodium falciparum/fisiologia , Adulto , Quimiocina CCL2/sangue , Progressão da Doença , Feminino , Hemopexina/metabolismo , Humanos , Índia , Interleucina-10/sangue , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
11.
J Transl Med ; 13: 369, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26602091

RESUMO

BACKGROUND: Plasmodium falciparum malaria in India is characterized by high rates of severe disease, with multiple organ dysfunction (MOD)-mainly associated with acute renal failure (ARF)-and increased mortality. The objective of this study is to identify cytokine signatures differentiating severe malaria patients with MOD, cerebral malaria (CM), and cerebral malaria with MOD (CM-MOD) in India. We have previously shown that two cytokines clusters differentiated CM from mild malaria in Maharashtra. Hence, we also aimed to determine if these cytokines could discriminate malaria subphenotypes in Odisha. METHODS: P. falciparum malaria patients from the SCB Medical College Cuttack in the Odisha state in India were enrolled along with three sets of controls: healthy individuals, patients with sepsis and encephalitis (n = 222). We determined plasma concentrations of pro- and anti-inflammatory cytokines and chemokines for all individuals using a multiplex assay. We then used an ensemble of statistical analytical methods to ascertain whether particular sets of cytokines/chemokines were predictors of severity or signatures of a disease category. RESULTS: Of the 26 cytokines/chemokines tested, 19 increased significantly during malaria and clearly distinguished malaria patients from controls, as well as sepsis and encephalitis patients. High amounts of IL-17, IP-10, and IL-10 predicted MOD, decreased IL-17 and MIP-1α segregated CM-MOD from MOD, and increased IL-12p40 differentiated CM from CM-MOD. Most severe malaria patients with ARF exhibited high levels of IL-17. CONCLUSION: We report distinct differences in cytokine production correlating with malarial disease severity in Odisha and Maharashtra populations in India. We show that CM, CM-MOD and MOD are clearly distinct malaria-associated pathologies. High amounts of IL-17, IP-10, and IL-10 were predictors of MOD; decreased IL-17 and MIP-1α separated CM-MOD from MOD; and increased IL-12p40 differentiated CM from CM-MOD. Data also suggest that the IL-17 pathway may contribute to malaria pathogenesis via different regulatory mechanisms and may represent an interesting target to mitigate the pathological processes in malaria-associated ARF.


Assuntos
Injúria Renal Aguda/fisiopatologia , Quimiocina CXCL10/fisiologia , Interleucina-10/fisiologia , Interleucina-17/fisiologia , Malária Falciparum/fisiopatologia , Insuficiência de Múltiplos Órgãos/fisiopatologia , Injúria Renal Aguda/patologia , Quimiocina CXCL10/sangue , Humanos , Interleucina-10/sangue , Interleucina-17/sangue , Malária Falciparum/patologia , Insuficiência de Múltiplos Órgãos/patologia
12.
Malar J ; 14: 162, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25889717

RESUMO

BACKGROUND: Mechanisms of acquired protection to malaria in asymptomatic Plasmodium falciparum carriers are only partially understood. Among them, the role plays by the self-reactive antibodies has not been clarified yet. In this study, the relationship between repertoires of circulating self-reactive and parasite-specific immunoglobulin G (IgG), their correlation with cytokine levels, and their association with protection against malaria was investigated in asymptomatic Plasmodium falciparum-infected Gabonese children. METHODS: The diversity of P. falciparum-specific antibody repertoire was analysed using a protein micro-array immunoassay, the total auto-antibody repertoire by quantitative immunoblotting and circulating cytokine levels were measured by ELISA in endemic controls (EC) and P. falciparum-infected children from Gabon with asymptomatic (AM) or mild malaria (MM). The association of self- and parasite-specific antibody repertoires with circulating cytokines was evaluated using single linkage hierarchical clustering, Kruskal-Wallis tests and Spearman's rank correlation. RESULTS: Children with AM exhibited an IgG response to merozoite surface protein 3 (MSP3) but not to MSP1-19, although their levels of total P. falciparum-specific IgG were similar to those in the MM group. Moreover, the asymptomatic children had increased levels of autoantibodies recognising brain antigens. In addition, a correlation between IL-10 levels and parasite load was found in AM and MM children. These two groups also exhibited significant correlations between plasma levels of IL-10 and IFN-γ with age and with total plasma IgG levels. IL-10 and IFN-γ levels were also associated with auto-antibody responses in AM. CONCLUSIONS: Altogether, these results indicate that a self-reactive polyclonal response associated with increased IgG to MSP3 and high plasma levels of IL-10 and IFN-γ may contribute to protective immune mechanisms triggered in asymptomatic P. falciparum infection in Gabonese children.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Autoanticorpos/sangue , Interleucina-10/sangue , Malária Falciparum/imunologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/imunologia , Infecções Assintomáticas , Autoanticorpos/biossíntese , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Gabão , Humanos , Lactente , Malária Falciparum/parasitologia , Masculino
13.
J Infect Dis ; 206(11): 1781-9, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22984113

RESUMO

Plasmodium falciparum infection generally induces elevated total plasma levels of immunoglobulins, some of which recognize self- or parasite-specific antigens. To our knowledge, we are the first to report high levels of functional immunoglobulin E (IgE) autoantibodies recognizing brain 14-3-3 protein ε in asymptomatic P. falciparum malaria. 14-3-3 ε protein belongs to a family of proteins that binds to CD81, a member of the tetraspanin superfamily elicited in hepatocyte invasion by sporozoites. Levels of expression of 14-3-3 ε protein were found to be increased in vivo and in vitro during Plasmodium yoelii and P. falciparum intrahepatic development. Collectively, these results indicate that self-reactive IgE is produced during malaria. In addition, the negative correlation between levels of self-reactive IgE to 14-3-3 ε protein and parasitemia in asymptomatic malaria due to P. falciparum supports a role for these IgE molecules in defense mechanisms, probably by interfering with development of liver-stage parasites through the CD81 pathway.


Assuntos
Proteínas 14-3-3/imunologia , Autoanticorpos/sangue , Imunoglobulina E/sangue , Malária Falciparum/imunologia , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Anopheles/parasitologia , Autoantígenos , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Humanos , Lactente , Fígado/parasitologia , Malária Falciparum/patologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Plasmodium yoelii/imunologia , Plasmodium yoelii/fisiologia
14.
Front Immunol ; 14: 1134020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575260

RESUMO

Cutaneous leishmaniasis (CL) caused by infection with the parasite Leishmania exhibits a large spectrum of clinical manifestations ranging from single healing to severe chronic lesions with the manifestation of resistance or not to treatment. Depending on the specie and multiple environmental parameters, the evolution of lesions is determined by a complex interaction between parasite factors and the early immune responses triggered, including innate and adaptive mechanisms. Moreover, lesion resolution requires parasite control as well as modulation of the pathologic local inflammation responses and the initiation of wound healing responses. Here, we have summarized recent advances in understanding the in situ immune response to cutaneous leishmaniasis: i) in North Africa caused by Leishmania (L.) major, L. tropica, and L. infantum, which caused in most cases localized autoresolutives forms, and ii) in French Guiana resulting from L. guyanensis and L. braziliensis, two of the most prevalent strains that may induce potentially mucosal forms of the disease. This review will allow a better understanding of local immune parameters, including cellular and cytokines release in the lesion, that controls infection and/or protect against the pathogenesis in new world compared to old world CL.


Assuntos
Leishmania , Leishmaniose Cutânea , Humanos , Guiana Francesa/epidemiologia , África do Norte , Citocinas
15.
J Biomed Biotechnol ; 2012: 695843, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22315513

RESUMO

Passive immunization with antibodies to recombinant Plasmodium falciparum P0 riboprotein (rPfP0, 61-316 amino acids) provides protection against malaria. Carboxy-terminal 16 amino acids of the protein (PfP0C0) are conserved and show 69% identity to human and mouse P0. Antibodies to this domain are found in 10-15% of systemic lupus erythematosus patients. We probed the nature of humoral response to PfP0C0 by repeatedly immunizing mice with rPfP0. We failed to raise stable anti-PfP0C0 hybridomas from any of the 21 mice. The average serum anti-PfP0C0 titer remained low (5.1 ± 1.3 × 104). Pathological changes were observed in the mice after seven boosts. Adsorption with dinitrophenyl hapten revealed that the anti-PfP0C0 response was largely polyreactive. This polyreactivity was distributed across all isotypes. Similar polyreactive responses to PfP0 and PfP0C0 were observed in sera from malaria patients. Our data suggests that PfP0 induces a deviant humoral response, and this may contribute to immune evasion mechanisms of the parasite.


Assuntos
Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Plasmodium/metabolismo , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/imunologia , Proteínas Ribossômicas/administração & dosagem , Proteínas Ribossômicas/imunologia , Animais , Feminino , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C
16.
Front Immunol ; 13: 1024998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569929

RESUMO

Many parasitic diseases (including cerebral malaria, human African trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and neuroschistosomiasis) feature acute or chronic brain inflammation processes, which are often associated with deregulation of glial cell activity and disruption of the brain blood barrier's intactness. The inflammatory responses of astrocytes and microglia during parasite infection are strongly influenced by a variety of environmental factors. Although it has recently been shown that the gut microbiota influences the physiology and immunomodulation of the central nervous system in neurodegenerative diseases like Alzheimer's disease and Parkinson's, the putative link in parasite-induced neuroinflammatory diseases has not been well characterized. Likewise, the central nervous system can influence the gut microbiota. In parasite infections, the gut microbiota is strongly perturbed and might influence the severity of the central nervous system inflammation response through changes in the production of bacterial metabolites. Here, we review the roles of astrocytes and microglial cells in the neuropathophysiological processes induced by parasite infections and their possible regulation by the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Malária Cerebral , Humanos , Microbioma Gastrointestinal/fisiologia , Doenças Neuroinflamatórias , Sistema Nervoso Central/metabolismo , Inflamação/metabolismo
17.
Life (Basel) ; 12(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35330166

RESUMO

Malaria, caused by Plasmodium species (spp.), is a deadly parasitic disease that results in approximately 400,000 deaths per year globally. Autophagy pathways play a fundamental role in the developmental stages of the parasite within the mammalian host. They are also involved in the production of Plasmodium-derived extracellular vesicles (EVs), which play an important role in the infection process, either by providing nutrients for parasite growth or by contributing to the immunopathophysiology of the disease. For example, during the hepatic stage, Plasmodium-derived EVs contribute to parasite virulence by modulating the host immune response. EVs help in evading the different autophagy mechanisms deployed by the host for parasite clearance. During cerebral malaria, on the other hand, parasite-derived EVs promote an astrocyte-mediated inflammatory response, through the induction of a non-conventional host autophagy pathway. In this review, we will discuss the cross-talk between Plasmodium-derived microvesicles and autophagy, and how it influences the outcome of infection.

18.
Autophagy ; 18(7): 1583-1598, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34747313

RESUMO

Cerebral malaria is a neuroinflammatory disease induced by P. falciparum infection. In animal models, the neuro-pathophysiology of cerebral malaria results from the sequestration of infected red blood cells (iRBCs) in microvessels that promotes the activation of glial cells in the brain. This activation provokes an exacerbated inflammatory response characterized by the secretion of proinflammatory cytokines and chemokines, leading to brain infiltration by pathogenic CD8+ T lymphocytes. Astrocytes are a major subtype of brain glial cells that play an important role in maintaining the homeostasis of the central nervous system, the integrity of the brain-blood barrier and in mounting local innate immune responses. We have previously shown that parasitic microvesicles (PbA-MVs) are transferred from iRBCs to astrocytes. The present study shows that an unconventional LC3-mediated autophagy pathway independent of ULK1 is involved in the transfer and degradation of PbA-MVs inside the astrocytes. We further demonstrate that inhibition of the autophagy process by treatment with 3-methyladenine blocks the transfer of PbA-MVs, which remain localized in the astrocytic cell membrane and are not internalized. Moreover, bafilomycin A1, another drug against autophagy promotes the accumulation of PbA-MVs inside the astrocytes by inhibiting the fusion with lysosomes, and prevents ECM in mice infected with PbA. Finally, we establish that RUBCN/rubicon or ATG5 silencing impede astrocyte production in CCL2 and CXCL10 chemokines induced by PbA stimulation. Altogether, our data suggest that a non-canonical autophagy-lysosomal pathway may play a key role in cerebral malaria through regulation of brain neuro-inflammation by astrocytes.


Assuntos
Malária Cerebral , Plasmodium , Animais , Astrócitos/metabolismo , Autofagia , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei
19.
Infect Immun ; 78(9): 4033-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20605973

RESUMO

Cerebral malaria is the most severe complication of human infection with Plasmodium falciparum. It was shown that Plasmodium berghei ANKA-induced cerebral malaria was prevented in 100% of mice depleted of CD8+ T cells 1 day prior to the development of neurological signs. However, the importance of parasites in the brains of these mice was never clearly investigated. Moreover, the relevance of this model to human cerebral malaria has been questioned many times, especially concerning the relative importance of leukocytes versus parasitized erythrocytes sequestered in the brain. Here, we show that mice protected from cerebral malaria by CD8+ T-cell depletion have significantly fewer parasites in the brain. Treatment of infected mice with an antimalarial drug 15 to 20 h prior to the estimated time of death also protected mice from cerebral malaria without altering the number of CD8+ T cells in the brain. These mice subsequently developed cerebral malaria with parasitized red blood cells in the brain. Our results clearly demonstrated that sequestration of CD8+ T cells in the brain is not sufficient for the development of cerebral malaria in C57BL/6 mice but that the concomitant presence of parasitized red blood cells is crucial for the onset of pathology. Importantly, these results also demonstrated that the experimental cerebral malaria model shares many features with human pathology and might be a relevant model to study its pathogenesis.


Assuntos
Encéfalo/parasitologia , Eritrócitos/parasitologia , Malária Cerebral/etiologia , Plasmodium berghei , Animais , Barreira Hematoencefálica , Encéfalo/imunologia , Linfócitos T CD8-Positivos/fisiologia , Eritrócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pirimetamina/farmacologia
20.
Malar J ; 8: 128, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19508725

RESUMO

BACKGROUND: In murine models of malaria, an early proinflammatory response has been associated with the resolution of blood-stage infection. To dissect the protective immune mechanism that allow the control of parasitaemia, the early immune response of C57BL/6 mice induced during a non-lethal plasmodial infection was analysed. METHODS: Mice were infected with Plasmodium yoelii 265BY sporozoites, the natural invasive form of the parasite, in order to complete its full life cycle. The concentrations of three proinflammatory cytokines in the sera of mice were determined by ELISA at different time points of infection. The contribution of the liver and the spleen to this cytokinic response was evaluated and the cytokine-producing lymphocytes were identified by flow cytometry. The physiological relevance of these results was tested by monitoring parasitaemia in genetically deficient C57BL/6 mice or wild-type mice treated with anti-cytokine neutralizing antibody. Finally, the cytokinic response in sera of mice infected with parasitized-RBCs was analysed. RESULTS: The early immune response of C57BL/6 mice to sporozoite-induced malaria is characterized by a peak of IFN-gamma in the serum at day 5 of infection and splenic CD4 T lymphocytes are the major producer of this cytokine at this time point. Somewhat unexpected, the parasitaemia is significantly lower in P. yoelii-infected mice in the absence of IFN-gamma. More precisely, at early time points of infection, IFN-gamma favours parasitaemia, whereas helping to clear efficiently the blood-stage parasites at later time points. Interestingly, the early IFN-gamma burst is induced by the pre-erythrocytic stage. CONCLUSION: These results challenge the current view regarding the role of IFN-gamma on the control of parasite growth since they show that IFN-gamma is not an essential mediator of protection in P. yoelii-infected C57BL/6 mice. Moreover, the mice parasitaemia is more efficiently controlled in the absence of an early IFN-gamma production, suggesting that this cytokine promotes parasite's growth. Finally, this early burst of IFN-gamma is induced by the pre-erythrocytic stage, showing the impact of this stage on the immune response taking place during the subsequent erythrocytic stage.


Assuntos
Interferon gama/imunologia , Parasitemia/imunologia , Plasmodium yoelii/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Interferon gama/sangue , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA