Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Langmuir ; 40(10): 5297-5305, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430189

RESUMO

Comprehensive magnetic particle stability together with compatibility between them and liquid medium (silicone oil) is still a crucial issue in the case of magnetorheological (MR) suspensions to guarantee their overall stability and MR performance. Therefore, this study is aimed at improving the interfacial stability between the carbonyl iron (CI) particles and silicone oil. In this respect, the particles were modified with polymer brushes and dendritic structures of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS), called CI-brushes or CI-dendrites, respectively, and their stability properties (corrosion, thermo-oxidation, and sedimentation) were compared to neat CI ones. Compatibility of the obtained particles and silicone oil was investigated using contact angle and off-state viscosity investigation. Finally, the magneto-responsive capabilities in terms of yield stress and reproducibility of the MR phenomenon were thoroughly investigated. It was found that MR suspensions based on CI-brushes had significantly improved compatibility properties than those of neat CI ones; however, the CI-dendrites-based suspension possessed the best capabilities, while the MR performance was negligibly suppressed.

2.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902270

RESUMO

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.


Assuntos
Hidrogéis , Infecção dos Ferimentos , Humanos , Pseudomonas aeruginosa , Peptídeos Antimicrobianos , Infecção dos Ferimentos/microbiologia , Bandagens , Antibacterianos
3.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234912

RESUMO

Core-shell nanocomposites comprising barium titanate, BaTiO3 (BTO), and poly(methyl methacrylate) (PMMA) chains grafted from its surface with varied grafting densities were prepared. BTO nanocrystals are high-k inorganic materials, and the obtained nanocomposites exhibit enhanced dielectric permittivity, as compared to neat PMMA, and a relatively low level of loss tangent in a wide range of frequencies. The impact of the molecular dynamics, structure, and interactions of the BTO surface on the polymer chains was investigated. The nanocomposites were characterized by broadband dielectric and vibrational spectroscopies (IR and Raman), transmission electron microscopy, differential scanning calorimetry, and nuclear magnetic resonance. The presence of ceramic nanoparticles in core-shell composites slowed down the segmental dynamic of PMMA chains, increased glass transition temperature, and concurrently increased the thermal stability of the organic part. It was also evidenced that, in addition to segmental dynamics, local ß relaxation was affected. The grafting density influenced the self-organization and interactions within the PMMA phase, affecting the organization on a smaller size scale of polymeric chains. This was explained by the interaction of the exposed surface of nanoparticles with polymer chains.


Assuntos
Nanopartículas , Polimetil Metacrilato , Bário , Simulação de Dinâmica Molecular , Nanopartículas/química , Polímeros/química , Polimetil Metacrilato/química
4.
Macromol Rapid Commun ; 40(2): e1800331, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29974536

RESUMO

The evolution of particle morphology occurring during polymerization-induced self-assembly (PISA) of a block copolymer poly(oligo(ethylene glycol) methacrylate)-b-poly(benzyl methacrylate) (POEGMA-b-PBzMA) is studied. A well-controlled reversible addition-fragmentation chain transfer (RAFT) polymerization yields nano-objects with various morphologies: spheres, aggregates, worm-like structures, and vesicles. A comparison of the morphology of the nano-objects formed from two different chain-length stabilizers established that the unreacted monomer played an important role during the morphology transitions, which is contrary to previous observations. In addition, morphology evolution to higher-order structures could be attained simply by extending the reaction time, after reaching full monomer conversion.


Assuntos
Técnicas de Química Sintética/métodos , Nanopartículas/química , Polimerização , Ácidos Polimetacrílicos/química , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Ácidos Polimetacrílicos/síntese química
5.
Langmuir ; 33(43): 12276-12284, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29017325

RESUMO

Severe water pollution issues present an important contemporary challenge that drives the development and advancement of efficient and environmentally benign photocatalysts that enable the degradation of pollutants upon visible light irradiation. One example is zinc oxide/carbon (ZnO/C) hybrid materials that have been shown to be effective photocatalysts. To maximize the effectiveness of ZnO/C hybrids, materials with high accessible surface area of ZnO are required. Here, a novel strategy is presented to enable the synthesis of fine dispersions of ZnO nanoparticles within a porous carbon matrix. The synthesis entails the grafting of ZnO nanparticles with polystyrene-b-poly(styrene-co-acrylonitrile) (PS-b-PSAN) block copolymer and subsequent pyrolysis of the material under inert gas (N2) atmosphere. During the pyrolysis process, the PS block effectively prevents agglomeration of ZnO particles, thus resulting in a fine dispersion of ZnO nanocrystals within a prorous C matrix. Materials are found to exhibit a dye adsorption capacity of 125 mg g-1 (from a methylene blue aqueous solution with a concentration of 305 mg L-1) and dye degradation rate constant of 0.021 min-1. The significant increase of effective surface area and degradation efficacy (as compared to ZnO/C synthesized by the pyrolysis of binary PSAN/ZnO blends) is rationalized as a consequence of the increased porosity that promotes dye adsorption and transport within the hybrid material.

6.
Langmuir ; 31(17): 4853-61, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25871942

RESUMO

Gradient copolymer grafts of styrene and α-tert-butoxy-ω-vinylbenzyl-poly(glycidol ethoxyethyl ether) (PGLet), a precursor of α-tert-butoxy-ω-vinylbenzyl-polyglycidol macromonomer (PGL), were prepared on silicon wafers via a surface-initiated activator generated by electron transfer radical polymerization (AGET ATRP). Silicon plates with previously attached 2-bromoisobutyrate served as a macroinitiator for the AGET ATRP (activator generated by electron transfer) of styrene and PGLet. The copolymers' gradient P(S-co-PPGL) of composition and thickness was obtained by a simple method where the plates were slowly removed from reaction mixture using a step motor. PGLet was added continuously (dropwise) into the reactor during withdrawal of the plates from solution in order to increase the relative concentration of PGLet in polymerization mixture. A range of strategies of making grafts was tested. The plates with copolymers grafts were analyzed by various techniques, like XPS, ellipsometry, and FTIR spectroscopy. The results indicate that the AGET ATRP process is dependent on the styrene/PGLet macromonomer ratio in the polymerization mixture. Under optimal conditions, the addition of PGLet during polymerization and subsequent deprotection of hydroxyl groups of PGLet permit to obtain plates with a novel copolymer layer with composition, thickness, and wettability gradient. Plates with chemical composition of copolymer grafts gradient served as versatile supports with controlled hydrophilic/hydrophobic area and were suitable for tailored deposition of particles.

7.
Macromol Rapid Commun ; 35(4): 405-11, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24318045

RESUMO

Heterotelechelic, hydrophilic polymers with a primary amine and thiol group at the α- and ω-chain end, respectively, are synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization in a straightforward and versatile way and subsequently used for the design of dual-responsive polymer/gold nanohybrids. Therefore, a phthalimido-containing chain transfer agent (CTA) is synthesized and used for the polymerization of the hydrophilic monomers N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA). After polymerization, the trithiocarbonate functionality at the ω-chain end, originating from the CTA, is converted into a thiol upon aminolysis. In the next step, the phthalimido α-chain end is hydrolyzed into a primary amine, resulting in heterotelechelic, hydrophilic polymers. End-group conversions are monitored by (1)H NMR spectroscopy, MALDI-TOF MS analysis, and UV-Vis spectroscopy, confirming that quantitative modifications are obtained during each stage. The amino groups of these heterotelechelic polymer chains are modified with citraconic anhydride, after which the obtained polymers are grafted with the thiol group onto citrate-stabilized gold nanoparticles resulting in the creation of dual-temperature- and pH-responsive gold particles.


Assuntos
Resinas Acrílicas/síntese química , Acrilamidas/química , Resinas Acrílicas/química , Aminas/química , Ouro/química , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila/química
8.
Adv Healthc Mater ; : e2400966, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847504

RESUMO

An injectable hydrogel formulation is developed utilizing low- and high-molecular-weight chitosan (LCH and HCH) incorporated with curcumin and α-tocopherol-loaded liposomes (Lip/Cur+Toc). Cur and Toc releases are delayed within the hydrogels. The injectability of hydrogels is proved via rheological analyses. In vitro studies are conducted using human dental pulp stem cells (hDPSCs) and human gingival fibroblasts (hGFs) to examine the biological performance of the hydrogels toward endodontics and periodontics, respectively. The viability of hDPSCs treated with the hydrogels with Lip/Cur+Toc is the highest till day 14, compared to the neat hydrogels. During odontogenic differentiation tests, alkaline phosphatase (ALP) enzyme activity of hDPSCs is induced in the Cur-containing groups. Biomineralization is enhanced mostly with Lip/Cur+Toc incorporation. The viability of hGFs is the highest in HCH combined with Lip/Cur+Toc while wound healing occurs almost 100% in both (Lip/Cur+Toc@LCH and Lip/Cur+Toc@HCH) after 2 days. Antioxidant activity of Lip/Cur+Toc@LCH on hGFs is significantly the highest among the groups. Antimicrobial tests demonstrate that Lip/Cur+Toc@LCH is more effective against Escherichia coli whereas so is Lip/Cur+Toc@HCH against Staphylococcus aureus. The antimicrobial mechanism of the hydrogels is investigated for the first time through various computational models. LCH and HCH loaded with Lip/Cur+Toc are promising candidates with multi-functional features for endodontics and periodontics.

9.
ACS Appl Mater Interfaces ; 16(29): 38550-38563, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980156

RESUMO

The role of carboxylic, aldehyde, or epoxide groups incorporated into bottlebrush macromolecules as anchoring blocks (or cartilage-binding blocks) is investigated by measuring their lubricating properties and cartilage-binding effectiveness. Mica modified with amine groups is used to mimic the cartilage surface, while bottlebrush polymers functionalized with carboxylic, aldehyde, or epoxide groups played the role of the lubricant interacting with the cartilage surface. We demonstrate that bottlebrushes with anchoring blocks effectively reduce the friction coefficient on modified surfaces by 75-95% compared to unmodified mica. The most efficient polymer appears to be the one with epoxide groups, which can react spontaneously with amines at room temperature. In this case, the value of the friction coefficient is the lowest and equals 0.009 ± 0.001, representing a 95% reduction compared to measurements on nonmodified mica. These results show that the presence of the functional groups within the anchoring blocks has a significant influence on interactions between the bottlebrush polymer and cartilage surface. All synthesized bottlebrush polymers are also used in the preliminary lubrication tests carried out on animal cartilage surfaces. The developed materials are very promising for future in vivo studies to be used in osteoarthritis treatment.


Assuntos
Cartilagem Articular , Lubrificação , Polímeros , Polímeros/química , Animais , Cartilagem Articular/química , Cartilagem Articular/fisiologia , Propriedades de Superfície , Silicatos de Alumínio/química , Fricção , Lubrificantes/química
10.
Langmuir ; 29(21): 6452-9, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23668752

RESUMO

The propensity of particle brush materials to form long-ranged ordered assembly structures is shown to sensitively depend on the brush architecture (i.e., the particle radius as well as molecular weight and grafting density of surface-bound chains). In the limit of stretched chain conformations of surface-grafted chains the formation of regular particle array structures is observed and interpreted as a consequence of hard-sphere-type interactions between polymer-grafted particles. As the degree of polymerization of surface-grafted chains increases beyond a threshold value, a reduction of the structural regularity is observed that is rationalized with the increased volume occupied by relaxed polymer segments. The capacity of polymer grafts to increase or decrease order in particle brush assembly structures is interpreted on the basis of a mean-field scaling model, and "design criteria" are developed to help guide the future synthesis of colloidal systems that are capable of forming mechanically robust yet ordered assembly structures.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Compostos Organoáuricos/síntese química , Polímeros/síntese química , Compostos de Sulfidrila/química , Reagentes de Ligações Cruzadas/química , Estrutura Molecular , Compostos Organoáuricos/química , Tamanho da Partícula , Polímeros/química , Teoria Quântica , Propriedades de Superfície
11.
Polymers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37896417

RESUMO

In view of implementing green technologies for bioplastic turning polices, novel durable feedstock for Bacillus mycoides ICRI89 used for efficient polyhydroxybutyrate (PHB) generation is proposed herein. First, two food waste (FW) pretreatment methods were compared, where the ultrasonication approach for 7 min was effective in easing the following enzymatic action. After treatment with a mixture of cellulase/amylases, an impressive 25.3 ± 0.22 g/L of glucose was liberated per 50 g of FW. Furthermore, a notable 2.11 ± 0.06 g/L PHB and 3.56 ± 0.11 g/L cell dry eight (CDW) over 120 h were generated, representing a productivity percentage of 59.3 wt% using 25% FW hydrolysate. The blend of polyhydroxybutyrate/poly (methyl methacrylate) (PHB/PMMA = 1:2) possessed the most satisfactory mechanical properties. For the first time, PHB was chemically crosslinked with PMMA using dicumyl peroxide (DCP), where a concentration of 0.3 wt% had a considerable effect on increasing the mechanical stability of the blend. FTIR analysis confirmed the molecular interaction between PHB and PMMA showing a modest expansion of the C=O stretching vibration at 1725 cm-1. The DCP-PHB/PMMA blend had significant thermal stability and biodegradation profiles comparable to those of the main constituent polymers. More importantly, a 3-Dimetional (3D) filament was successfully extruded with a diameter of 1.75 mm, where no blockages or air bubbles were noticed via SEM. A new PHB/PMMA "key of life" 3D model has been printed with a filling percentage of 60% and a short printing time of 19.2 min. To conclude, high-performance polymeric 3D models have been fabricated to meet the pressing demands for future applications of sustainable polymers.

12.
ACS Sustain Chem Eng ; 11(18): 7123-7135, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37180027

RESUMO

The bioactivities of polyhydroxyalkanoates have been curtailed owing to the lack of bioactive functional groups in their backbones. In this regard, polyhydroxybutyrate (PHB) produced from new locally isolated Bacillus nealsonii ICRI16 was chemically modified for enhancing its functionality, stability as well as solubility. First, PHB was transformed to PHB-diethanolamine (PHB-DEA) by transamination. Subsequently, for the first time, the chain ends of the polymer were substituted by caffeic acid molecules (CafA), generating novel PHB-DEA-CafA. The chemical structure of such a polymer was confirmed by Fourier-transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H NMR). The modified polyester demonstrated improved thermal behavior compared to PHB-DEA as was shown by thermogravimetric analysis, derivative thermogravimetry, and differential scanning calorimetry analyses. Interestingly, 65% of PHB-DEA-CafA was biodegraded in a clay soil environment after 60 days at 25 °C, while 50% of PHB was degraded within the same period. On another avenue, PHB-DEA-CafA nanoparticles (NPs) were successfully prepared with an impressive mean particle size of 223 ± 0.12 nm and high colloidal stability. The nanoparticulate polyester had powerful antioxidant capacity with an IC50 of 32.2 mg/mL, which was the result of CafA loading in the polymer chain. More importantly, the NPs had a considerable effect on the bacterial behavior of four food pathogens, inhibiting 98 ± 0.12% of Listeria monocytogenes DSM 19094 after 48 h of exposure. Finally, the raw polish sausage coated with NPs had a significantly lower bacterial count of 2.11 ± 0.21 log cfu/g in comparison to other groups. When all these positive features are recognized, the polyester described herein could be considered as a good candidate for commercial active food coatings.

13.
Materials (Basel) ; 16(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37763521

RESUMO

Polypropylene color masterbatches containing modified layered double hydroxides, LDHs, were created. The simple, industry-acceptable method of LDH surface modification with quinacridone and phthalocyanine pigments using the pulverization method in ball mills was applied. It was reported that the modification parameters such as time and rotational speed affected the tendency to create the aggregates for modified fillers. TGA analysis of the modified LDH showed that modification with phthalocyanine pigment shifted the temperature at which 5%, T5%, and 10% of mass loss, T10%, occurred compared with that for unmodified LDH. The viscoelastic properties of prepared masterbatches were investigated. The incorporation of the modified fillers instead of neat pigments led to an increase in the loss shear modulus, G″, indicating a stronger influence on the dissipation of energy by the melted masterbatch. The similar values of tan, δ, were determined for melted masterbatches containing phthalocyanine pigment and green modified LDH filler. The incorporation of both LDHs modified by phthalocyanine and quinacridone pigment fillers slightly increased the zero-shear viscosity, η0, compared with that of the masterbatches based on the neat pigments. The Cole-Cole plots and the analysis of the Maxwell and continuous relaxation models showed that modified colored LDH fillers facilitated the relaxation of the melted masterbatch, and shorter relaxation times were observed. The phthalocyanine-modified LDH filler improved the thermal stability of the masterbatches. Additionally, the impact of pigments and modified, colored LDH on the crystallization of polypropylene was investigated.

14.
Int J Biol Macromol ; 225: 416-429, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375664

RESUMO

Despite the high demand for curdlan (Curd), its industrial implementation has not reached a mature stage due to the high cost of simple sugar feed stocks. Herein, Musa sapientum peels hydrolysate (MPH) was proposed for the first time as a sustainable medium for Curd generation and as an ameliorated functional biomaterial for quercetin (Quer) sustained release. In this study, banana peels have been hydrolysed by 3 % NaOH catalyst/ 60 °C, yielding high concentration of glucose 20.5 ± 0.04 and 24.3 ± 0.11 g/L and reducing sugar amount, respectively. Meanwhile, a novel local Rahnella variigena ICRI91 strain was isolated from soil, that was useful for Curd production and identified by 16S rRNA analysis. Furthermore, three-batch fermentation models were carried out using MPH for obtaining a sufficient yield of Curd. R. variigena ICRI91 accumulated a satisfactory Curd concentration; 10.3 ± 0.25 g/L; using 60 g/L MPH. On the other hand, the strain produced an impressive Curd yield; 21.5 ± 0.13 g/L with an attained productivity of 0.179 ± 0.01 g/L/h and a sugar consumption of 68 ± 0.25 % as the MPH content increased to 100 g/L. For the first time, Curd hydrogel was modified by different amount of Xylitol (Xyl), reaching good mechanical performance; 3.1 MPa and 75 % for tensile strength (TS) and elongation at break (EB), respectively. Curd/Xyl (3/5) hydrogel was then integrated with nanometer-sized quercetin nanocrystals (Quer NCs, 83 ± 0.12 nm) with high colloidal stability of -23 ± 0.05 mV. The interconnected H- bonding between Xyl and Curd was confirmed by FTIR and SEM. The generated biomaterial was tailored to exhibit a sustained Quer release over 72 h. It also has improved antibacterial efficacy against four bacterial pathogens compared to that of a free drug. In recognition of these merits, an edible polymeric nanomaterial has been proposed for the functional food and biomedicine sectors.


Assuntos
Musa , Quercetina , Hidrólise , Preparações de Ação Retardada , Hidrogéis , RNA Ribossômico 16S , Fermentação
15.
Int J Biol Macromol ; 245: 125585, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379949

RESUMO

In response to the pressing demand for functional nanomaterials synthesis and applications, two polyelectrolyte complexes (PECs) [electrostatic and cross-linked nanogels (NGs)] loaded individually with caffeic acid (CafA) and eugenol (Eug) demonstrating multifunctionalities were proposed for the first time. Curdlan (Curd) and glucomannan (GM) were carboxymethylated (CMCurd and CMGM) successfully and polymeric ratios of 1:1 and 4:1 (v/v) for chitosan (Cs): CMCurd and lactoferrin (Lf): CMGM were selected for the synthesis of Cs/CMCurd and Lf/CMGM NGs. Due to the use of EDC/NHS, Cs/CMCurd/CafA and Lf/CMGM/Eug NGs possessed very uniform particles sizes of 177 ± 18 and 230 ± 17 nm with marked encapsulation efficiencies (EEs) of 76 ± 4 and 88 ± 3 %, respectively. The formation of a carbonyl-amide linkage in both cross-linked NGs was confirmed by FTIR. It should be noted, the self-assembly was not reliable in retaining enough of the encapsulated compounds. Owing to the excellent physicochemical characteristics of the loaded cross-linked NGs, they were prioritized over the electrostatic ones. Both Cs/CMCurd/CafA and Lf/CMGM/Eug NGs exhibited high colloidal stability over 12 weeks, elevated hemocompatibility, and in vitro serum stability. The generated NGs were also tailored to possess controlled release profiles for CafA and Eug over 72 h. Cs/CMCurd/CafA and Lf/CMGM/Eug NGs had promising antioxidant efficacies and could remarkably inhibit 4 bacterial pathogens at low 2-16 µg/mL concentration of encapsulated NGs compared to their unencapsulated counterparts. Interestingly, the respective NGs could significantly decline the IC50 against colorectal cancer HCT-116 than conventional drugs. Based on these data, it was conferred that the investigated NGs could be promising candidates for functional foods and pharmaceutics.


Assuntos
Eugenol , Polissacarídeos , Nanogéis , Eletricidade Estática
16.
Polymers (Basel) ; 14(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35215627

RESUMO

Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of the network were degraded back to star-like products upon exposure to temperatures above 135 °C. Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the inversion of polymer topology after thermal treatment.

17.
Int J Biol Macromol ; 215: 346-367, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35718150

RESUMO

Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.


Assuntos
Quitosana , Nanopartículas , Materiais Biocompatíveis/uso terapêutico , Quitosana/uso terapêutico , Nanopartículas/uso terapêutico , Polímeros , Polissacarídeos , Engenharia Tecidual
18.
Macromol Rapid Commun ; 32(3): 295-301, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21433174

RESUMO

Hybrid nanoparticles with a silica core and grafted poly(methyl methacrylate) (PMMA) or poly(n-butyl methacrylate) (PBMA) chains were prepared via activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) at room temperature under high pressure. Due to enhanced propagation rate constant and reduced termination rate constant for polymerizations conducted under high pressure, the rate of polymerization was increased, while preserving good control over polymerization when compared to ATRP under ambient pressure. Molecular weights of greater than 1 million were obtained. The PMMA and PBMA brushes exhibited "semi-diluted" or "diluted" brush architecture with the highest grafting densities ≈0.3 chain·nm(-2).


Assuntos
Radicais Livres/química , Polímeros/síntese química , Polimetil Metacrilato/química , Dióxido de Silício/química , Cinética , Estrutura Molecular , Peso Molecular , Nanopartículas , Polimerização , Polímeros/química , Ácidos Polimetacrílicos/química , Pressão , Temperatura
19.
Materials (Basel) ; 14(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771764

RESUMO

Thermo-responsive shape memory materials were developed based on recycled ethylene-propylene-diene (EPDM) rubber shred and thermoplastic elastomers (TPE). Ethylene-1-octene TPEs (Engage 8180, 8411, 8452) with varying degrees of crystallinity and Mooney viscosity were used to prepare the composite materials. To avoid the deterioration of static mechanical properties after mixing recycled EPDM rubber shred (RS) with thermoplastic elastomers, they were partially cured using dicumyl peroxide. The peroxide curing was the most effective for a rubber shred/Engage 8180 blend, where the highest cure rate index (CRI), 1.88 dNm⋅min-1, was observed. The curing caused an approximately 4-fold increase of tensile strength (TS) values for EPDM rubber shred/thermoplastic elastomer blend to the level acceptable for the rubber industry compared with an uncured blend. The incorporation of EPDM rubber shred changed thermoplastic elastomers' viscoelastic behavior, increasing the values of storage (G') and loss (G″) modulus. The lowest viscosity of molten Engage 8411 during mixing led to higher compatibility of rubber shred RS/8411 blend, as confirmed by analysis of Cole-Cole plots and the blend morphology. All rubber shred RS/TPE blends showed the shape memory behavior. For the RS/Engage 8452 blend, the highest shape fixity (F) value (94%) was observed, while the shape recovery (RR) was 87%. Studies confirmed that the intelligent materials with shape memory effect could be obtained via selectively chosen thermoplastic elastomers; ethylene-1-octene as a binder for recycled EPDM. Prepared recycled TPE/rubber shred blends can be successfully reused due to their viscoelastic and mechanical properties. Therefore, such a concept can be potentially interesting for the rubber industry.

20.
Acta Biomater ; 123: 31-50, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444800

RESUMO

Osteoarthritis (OA), is a common musculoskeletal disorder that will progressively increase in older populations and is expected to be the most dominant cause of disability in the world population by 2030. The progression of OA is controlled by a multi-factorial pathway that has not been completely elucidated and understood yet. However, over the years, research efforts have provided a significant understanding of some of the processes contributing to the progression of OA. Both cartilage and bone degradation processes induce articular cells to produce inflammatory mediators that produce proinflammatory cytokines that block the synthesis of collagen type II and aggrecan, the major components of cartilage. Systemic administration and intraarticular injection of anti-inflammatory agents are the first-line treatments of OA. However, small anti-inflammatory molecules are rapidly cleared from the joint cavity which limits their therapeutic efficacy. To palliate this strong technological drawback, different types of polymeric materials such as microparticles, nanoparticles, and hydrogels, have been examined as drug carriers for the delivery of therapeutic agents to articular joints. The main purpose of this review is to provide a summary of recent developments in natural and synthetic polymeric drug delivery systems for the delivery of anti-inflammatory agents to arthritic joints. Furthermore, this review provides an overview of the design rules that have been proposed so far for the development of drug carriers used in OA therapy. Overall it is difficult to state clearly which polymeric platform is the most efficient one because many advantages and disadvantages could be pointed to both natural and synthetic formulations. That requires further research in the near future.


Assuntos
Cartilagem Articular , Osteoartrite , Idoso , Cartilagem , Sistemas de Liberação de Medicamentos , Humanos , Injeções Intra-Articulares , Articulações , Osteoartrite/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA