Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Commun Biol ; 7(1): 497, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658677

RESUMO

Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.


Assuntos
Acrilamidas , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Indóis , Neoplasias Pulmonares , Mutação , Pirimidinas , Fatores de Transcrição , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Gefitinibe/farmacologia , Via de Sinalização Hippo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas
2.
Toxicol Appl Pharmacol ; 272(2): 399-407, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23872097

RESUMO

Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/µCT imaging. GSK-3 inhibitors caused ß-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH1-34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/µCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Biomarcadores/sangue , Densidade Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Feminino , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Fêmur/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/enzimologia , Estrutura Molecular , Osteoblastos/citologia , Osteoblastos/enzimologia , Ratos , Ratos Sprague-Dawley
3.
Nat Protoc ; 18(7): 1981-2013, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37344608

RESUMO

In image-based profiling, software extracts thousands of morphological features of cells from multi-channel fluorescence microscopy images, yielding single-cell profiles that can be used for basic research and drug discovery. Powerful applications have been proven, including clustering chemical and genetic perturbations on the basis of their similar morphological impact, identifying disease phenotypes by observing differences in profiles between healthy and diseased cells and predicting assay outcomes by using machine learning, among many others. Here, we provide an updated protocol for the most popular assay for image-based profiling, Cell Painting. Introduced in 2013, it uses six stains imaged in five channels and labels eight diverse components of the cell: DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, plasma membrane, endoplasmic reticulum and mitochondria. The original protocol was updated in 2016 on the basis of several years' experience running it at two sites, after optimizing it by visual stain quality. Here, we describe the work of the Joint Undertaking for Morphological Profiling Cell Painting Consortium, to improve upon the assay via quantitative optimization by measuring the assay's ability to detect morphological phenotypes and group similar perturbations together. The assay gives very robust outputs despite various changes to the protocol, and two vendors' dyes work equivalently well. We present Cell Painting version 3, in which some steps are simplified and several stain concentrations can be reduced, saving costs. Cell culture and image acquisition take 1-2 weeks for typically sized batches of ≤20 plates; feature extraction and data analysis take an additional 1-2 weeks.This protocol is an update to Nat. Protoc. 11, 1757-1774 (2016): https://doi.org/10.1038/nprot.2016.105.


Assuntos
Técnicas de Cultura de Células , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Mitocôndrias , Software
4.
Oncogene ; 41(46): 5046-5060, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36241868

RESUMO

The PI3K pathway is commonly activated in breast cancer, with PI3K-AKT pathway inhibitors used clinically. However, mechanisms that limit or enhance the therapeutic effects of PI3K-AKT inhibitors are poorly understood at a genome-wide level. Parallel CRISPR screens in 3 PTEN-null breast cancer cell lines identified genes mediating resistance to capivasertib (AKT inhibitor) and AZD8186 (PI3Kß inhibitor). The dominant mechanism causing resistance is reactivated PI3K-AKT-mTOR signalling, but not other canonical signalling pathways. Deletion of TSC1/2 conferred resistance to PI3Kßi and AKTi through mTORC1. However, deletion of PIK3R2 and INPPL1 drove specific PI3Kßi resistance through AKT. Conversely deletion of PIK3CA, ERBB2, ERBB3 increased PI3Kßi sensitivity while modulation of RRAGC, LAMTOR1, LAMTOR4 increased AKTi sensitivity. Significantly, we found that Mcl-1 loss enhanced response through rapid apoptosis induction with AKTi and PI3Kßi in both sensitive and drug resistant TSC1/2 null cells. The combination effect was BAK but not BAX dependent. The Mcl-1i + PI3Kß/AKTi combination was effective across a panel of breast cancer cell lines with PIK3CA and PTEN mutations, and delivered increased anti-tumor benefit in vivo. This study demonstrates that different resistance drivers to PI3Kßi and AKTi converge to reactivate PI3K-AKT or mTOR signalling and combined inhibition of Mcl-1 and PI3K-AKT has potential as a treatment strategy for PI3Kßi/AKTi sensitive and resistant breast tumours.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Fatores de Troca do Nucleotídeo Guanina
5.
Mol Cell Biochem ; 341(1-2): 73-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20333445

RESUMO

Within the liver, hormonal control of glycogen metabolism allows for rapid release and uptake of glucose from the circulation, providing a reserve of glucose that can be utilised by other organs. Traditionally, cellular glycogen storage has been detected using Periodic acid Schiff (PAS) staining of histopathology samples or a biochemical assay. Colorimetric measurement of glycogen content using PAS staining is hard to quantify whilst biochemical techniques give limited information about events such as cytotoxicity or allow analysis of hepatic heterogeneity. Here, we describe the development of an imaging based method to quantify glycogen storage in 96-well cultures of primary rat hepatocytes using the inherent fluorescence properties of the Schiff reagent. PAS-stained hepatocytes were imaged using an automated fluorescent microscope, with the amount of glycogen present in each cell being quantified. Using this technique, we found an increase in glycogen storage in response to insulin (EC50 = 0.31 nM) that was in agreement with that determined using biochemical quantification (EC50 = 0.32 nM). Furthermore, a dose dependent increase in glycogen storage was also seen in response to glycogen synthase kinase inhibitors and glycogen phosphorylase inhibitors. This technique allows rapid assessment of cellular glycogen storage in response to hormones and small molecule inhibitors.


Assuntos
Diagnóstico por Imagem/métodos , Glicogênio/metabolismo , Hepatócitos/metabolismo , Análise em Microsséries/métodos , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Sintase/antagonistas & inibidores , Hepatócitos/citologia , Insulina/farmacologia , Métodos , Microscopia de Fluorescência , Ratos , Bases de Schiff
6.
SLAS Discov ; 25(6): 618-633, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476557

RESUMO

CRISPR/Cas9 is increasingly being used as a tool to prosecute functional genomic screens. However, it is not yet possible to apply the approach at scale across a full breadth of cell types and endpoints. In order to address this, we developed a novel and robust workflow for array-based lentiviral CRISPR/Cas9 screening. We utilized a ß-lactamase reporter gene assay to investigate mediators of TNF-α-mediated NF-κB signaling. The system was adapted for CRISPR/Cas9 through the development of a cell line stably expressing Cas9 and application of a lentiviral gRNA library comprising mixtures of four gRNAs per gene. We screened a 743-gene kinome library whereupon hits were independently ranked by percent inhibition, Z' score, strictly standardized mean difference, and T statistic. A consolidated and optimized ranking was generated using Borda-based methods. Screening data quality was above acceptable limits (Z' ≥ 0.5). In order to determine the contribution of individual gRNAs and to better understand false positives and negatives, a subset of gRNAs, against 152 genes, were profiled in singlicate format. We highlight the use of known reference genes and high-throughput, next-generation amplicon and RNA sequencing to assess screen data quality. Screening with singlicate gRNAs was more successful than screening with mixtures at identifying genes with known regulatory roles in TNF-α-mediated NF-κB signaling and was found to be superior to previous RNAi-based methods. These results add to the available data on TNF-α-mediated NF-κB signaling and establish a high-throughput functional genomic screening approach, utilizing a vector-based arrayed gRNA library, applicable across a wide variety of endpoints and cell types at a genome-wide scale.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , NF-kappa B/genética , Fator de Necrose Tumoral alfa/genética , Biblioteca Gênica , Genes Reporter/genética , Genoma Humano/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Fosfotransferases/classificação , Fosfotransferases/genética , RNA Guia de Cinetoplastídeos/genética , Transdução de Sinais/genética , beta-Lactamases/genética
7.
Mol Cancer Ther ; 18(5): 909-919, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30872381

RESUMO

Barasertib (AZD1152), a pro-drug of the highly potent and selective Aurora B kinase inhibitor AZD2811, showed promising clinical activity in relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients administered as a 4-day infusion. To improve potential therapeutic benefit of Aurora B kinase inhibition, a nanoparticle formulation of AZD2811 has been developed to address limitations of repeated intravenous infusion. One of the challenges with the use of nanoparticles for chronic treatment of tumors is optimizing dose and schedule required to enable repeat administration to sustain tumor growth inhibition. AZD2811 gives potent cell growth inhibition across a range of DLBCL cells lines in vitro In vivo, repeat administration of the AZD2811 nanoparticle gave antitumor activity at half the dose intensity of AZD1152. Compared with AZD1152, a single dose of AZD2811 nanoparticle gave less reduction in pHH3, but increased apoptosis and reduction of cells in G1 and G2-M, albeit at later time points, suggesting that duration and depth of target inhibition influence the nature of the tumor cell response to drug. Further exploration of the influence of dose and schedule on efficacy revealed that AZD2811 nanoparticle can be used flexibly with repeat administration of 25 mg/kg administered up to 7 days apart being sufficient to maintain equivalent tumor control. Timing of repeat administration could be varied with 50 mg/kg every 2 weeks controlling tumor control as effectively as 25 mg/kg every week. AZD2811 nanoparticle can be administered with very different doses and schedules to inhibit DLBCL tumor growth, although maximal tumor growth inhibition was achieved with the highest dose intensities.


Assuntos
Acetanilidas/farmacologia , Aurora Quinase B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Acetanilidas/química , Animais , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Nanopartículas/química , Inibidores de Proteínas Quinases/química , Quinazolinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 8(1): 10160, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976997

RESUMO

Pharmaceutical agents despite their efficacy to treat disease can cause additional unwanted cardiovascular side effects. Cardiotoxicity is characterized by changes in either the function and/or structure of the myocardium. Over recent years, functional cardiotoxicity has received much attention, however morphological damage to the myocardium and/or loss of viability still requires improved detection and mechanistic insights. A human 3D cardiac microtissue containing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), cardiac endothelial cells and cardiac fibroblasts was used to assess their suitability to detect drug induced changes in cardiac structure. Histology and clinical pathology confirmed these cardiac microtissues were morphologically intact, lacked a necrotic/apoptotic core and contained all relevant cell constituents. High-throughput methods to assess mitochondrial membrane potential, endoplasmic reticulum integrity and cellular viability were developed and 15 FDA approved structural cardiotoxins and 14 FDA approved non-structural cardiotoxins were evaluated. We report that cardiac microtissues provide a high-throughput experimental model that is both able to detect changes in cardiac structure at clinically relevant concentrations and provide insights into the phenotypic mechanisms of this liability.


Assuntos
Imageamento Tridimensional , Miocárdio/patologia , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Cardiotoxinas/química , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sobrevivência de Tecidos/efeitos dos fármacos
9.
Toxicol Sci ; 155(2): 444-457, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28069985

RESUMO

Cardiotoxicity is a common cause of attrition in preclinical and clinical drug development. Current in vitro approaches have two main limitations, they either are limited to low throughput methods not amendable to drug discovery or lack the physiological responses to allow an integrated risk assessment. A human 3D cardiac microtissue containing human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), cardiac endothelial cells and cardiac fibroblast were used to assess their suitability to detect drug induced changes in cardiomyocyte contraction. These cardiac microtissues, have a uniform size, spontaneously beat, lack a hypoxic core, and contain key markers of each cell type. Application of field stimulation and measurement of cardiac contraction confirm cardiac microtissues to be a suitable model to investigate drug-induced changes in cardiomyocyte contractility. Using a bespoke image acquisition work flow and optical flow analysis method to test 29 inotroptic and 13 non-inotroptic compounds in vivo We report that cardiac microtissues provide a high-throughput experimental model that is both able to detect changes in cardiac contraction with a sensitivity and specificity of 80 and 91%, respectively, and provide insight into the direction of the inotropic response. Allowing improved in vitro cardiac contractility risk assessment. Moreover, our data provide evidence of the detection of this liability at therapeutically relevant concentrations with a throughput amenable to drug discovery.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala/métodos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Células Cultivadas , Expressão Gênica , Humanos
10.
Clin Cancer Res ; 23(24): 7584-7595, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972046

RESUMO

Purpose: PTEN-null tumors become dependent on the PI3Kß isoform and can be targeted by molecules such as the selective PI3Kß inhibitor AZD8186. However, beyond the modulation of the canonical PI3K pathway, the consequences of inhibiting PI3Kß are poorly defined.Experimental Design: To determine the broader impact of AZD8186 in PTEN-null tumors, we performed a genome-wide RNA-seq analysis of PTEN-null triple-negative breast tumor xenografts treated with AZD8186. Mechanistic consequences of AZD8186 treatment were examined across a number of PTEN-null cell lines and tumor models.Results: AZD8186 treatment resulted in modification of transcript and protein biomarkers associated with cell metabolism. We observed downregulation of cholesterol biosynthesis genes and upregulation of markers associated with metabolic stress. Downregulation of cholesterol biosynthesis proteins, such as HMGCS1, occurred in PTEN-null cell lines and tumor xenografts sensitive to AZD8186. Therapeutic inhibition of PI3Kß also upregulated PDHK4 and increased PDH phosphorylation, indicative of reduced carbon flux into the TCA cycle. Consistent with this, metabolomic analysis revealed a number of changes in key carbon pathways, nucleotide, and amino acid biosynthesis.Conclusions: This study identifies novel mechanistic biomarkers of PI3Kß inhibition in PTEN-null tumors supporting the concept that targeting PI3Kß may exploit a metabolic dependency that contributes to therapeutic benefit in inducing cell stress. Considering these additional pathways will guide biomarker and combination strategies for this class of agents. Clin Cancer Res; 23(24); 7584-95. ©2017 AACR.


Assuntos
Compostos de Anilina/administração & dosagem , Cromonas/administração & dosagem , Classe II de Fosfatidilinositol 3-Quinases/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Compostos de Anilina/efeitos adversos , Animais , Linhagem Celular Tumoral , Cromonas/efeitos adversos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hidroximetilglutaril-CoA Sintase/genética , Redes e Vias Metabólicas/genética , Camundongos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cancer Ther ; 16(6): 1031-1040, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292940

RESUMO

Barasertib (AZD1152), a highly potent and selective aurora kinase B inhibitor, gave promising clinical activity in elderly acute myeloid leukemia (AML) patients. However, clinical utility was limited by the requirement for a 7-day infusion. Here we assessed the potential of a nanoparticle formulation of the selective Aurora kinase B inhibitor AZD2811 (formerly known as AZD1152-hQPA) in preclinical models of AML. When administered to HL-60 tumor xenografts at a single dose between 25 and 98.7 mg/kg, AZD2811 nanoparticle treatment delivered profound inhibition of tumor growth, exceeding the activity of AZD1152. The improved antitumor activity was associated with increased phospho-histone H3 inhibition, polyploidy, and tumor cell apoptosis. Moreover, AZD2811 nanoparticles increased antitumor activity when combined with cytosine arabinoside. By modifying dose of AZD2811 nanoparticle, therapeutic benefit in a range of preclinical models was further optimized. At high-dose, antitumor activity was seen in a range of models including the MOLM-13 disseminated model. At these higher doses, a transient reduction in bone marrow cellularity was observed demonstrating the potential for the formulation to target residual disease in the bone marrow, a key consideration when treating AML. Collectively, these data establish that AZD2811 nanoparticles have activity in preclinical models of AML. Targeting Aurora B kinase with AZD2811 nanoparticles is a novel approach to deliver a cell-cycle inhibitor in AML, and have potential to improve on the clinical activity seen with cell-cycle agents in this disease. Mol Cancer Ther; 16(6); 1031-40. ©2017 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Aurora Quinase B/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Nanopartículas , Organofosfatos/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Citarabina/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/mortalidade , Camundongos , Organofosfatos/farmacocinética , Poliploidia , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/farmacocinética , Ratos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Physiol Rep ; 4(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26733245

RESUMO

Synaptosomal-associated protein 23 (SNAP23) is a SNARE protein expressed abundantly in human skeletal muscle. Its established role is to mediate insulin-stimulated docking and fusion of glucose transporter 4 (GLUT4) with the plasma membrane. Recent in vitro research has proposed that SNAP23 may also play a role in the fusion of growing lipid droplets (LDs) and the channeling of LD-derived fatty acids (FAs) into neighboring mitochondria for ß-oxidation. This study investigates the subcellular distribution of SNAP23 in human skeletal muscle using immunofluorescence microscopy to confirm that SNAP23 localization supports the three proposed metabolic roles. Percutaneous biopsies were obtained from the m. vastus lateralis of six lean, healthy males in the rested, overnight fasted state. Cryosections were stained with antibodies targeting SNAP23, the mitochondrial marker cytochrome c oxidase and the plasma membrane marker dystrophin, whereas intramuscular LDs were stained using the neutral lipid dye oil red O. SNAP23 displayed areas of intense punctate staining in the intracellular regions of all muscle fibers and continuous intense staining in peripheral regions of the cell. Quantitation of confocal microscopy images showed colocalization of SNAP23 with the plasma membrane marker dystrophin (Pearson's correlation coefficient r = 0.50 ± 0.01). The intense punctate intracellular staining colocalized primarily with the mitochondrial marker cytochrome C oxidase (r = 0.50 ± 0.012) and to a lesser extent with LDs (r = 0.21 ± 0.01) visualized with oil red O. We conclude that the observed subcellular distribution of SNAP23 in human skeletal muscle supports the three aforementioned metabolic roles.


Assuntos
Membrana Celular/química , Gotículas Lipídicas/química , Mitocôndrias/química , Músculo Esquelético/química , Músculo Esquelético/citologia , Proteínas Qb-SNARE/análise , Proteínas Qc-SNARE/análise , Humanos , Masculino , Microscopia de Fluorescência/métodos , Adulto Jovem
13.
J Biomol Screen ; 16(1): 36-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21088147

RESUMO

Dipeptidyl peptidase 1 (DPP1) (EC 3.4.14.1; also known as cathepsin C, cathepsin J, dipeptidyl aminopeptidase, and dipeptidyl aminotransferase) is a lysosomal cysteinyl protease of the papain family involved in the intracellular degradation of proteins. Isolated enzyme assays for DPP1 activity using a variety of synthetic substrates such as dipeptide or peptide linked to amino-methyl-coumarin (AMC) or other fluorophores are well established. There is, however, no report of a simple whole-cell-based assay for measuring lysosomal DPP1 activity other than the use of flow cytometry (fluorescence-activated cell sorting) or the use of invasive activity-based probes or the production of physiological products such as neutrophil elastase. The authors investigated a number of DPP1 fluorogenic substrates that have the potential to access the lysosome and enable the measurement of DPP1 enzyme activity in situ. They describe the development and evaluation of a simple noninvasive fluorescence assay for measuring DPP1 activity in fresh or cryopreserved human THP-1 cells using the substrate H-Gly-Phe-AFC (amino-fluoro-coumarin). This cell-based fluorescence assay can be performed in a 96-well plate format and is ideally suited for determining the cell potency of potential DPP1 enzyme inhibitors.


Assuntos
Aminocumarinas/metabolismo , Bioensaio , Catepsina C/análise , Dipeptídeos/metabolismo , Corantes Fluorescentes/metabolismo , Lisossomos/enzimologia , Animais , Linhagem Celular Tumoral , Fluorescência , Humanos , Espaço Intracelular/enzimologia , Especificidade por Substrato
14.
J Bone Miner Res ; 26(4): 811-21, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20939016

RESUMO

Small molecules are attractive therapeutics to amplify and direct differentiation of stem cells. They also can be used to understand the regulation of their fate by interfering with specific signaling pathways. Mesenchymal stem cells (MSCs) have the potential to proliferate and differentiate into several cell types, including osteoblasts. Activation of canonical Wnt signaling by inhibition of glycogen synthase kinase 3 (GSK-3) has been shown to enhance bone mass, possibly by involving a number of mechanisms ranging from amplification of the mesenchymal stem cell pool to the commitment and differentiation of osteoblasts. Here we have used a highly specific novel inhibitor of GSK-3, AR28, capable of inducing ß-catenin nuclear translocation and enhanced bone mass after 14 days of treatment in BALB/c mice. We have shown a temporally regulated increase in the number of colony-forming units-osteoblast (CFU-O) and -adipocyte (CFU-A) but not colony-forming units-fibroblast (CFU-F) in mice treated for 3 days. However, the number of CFU-O and CFU-A returned to normal levels after 14 days of treatment, and the number of CFU-F was decreased significantly. In contrast, the number of osteoblasts increased significantly only after 14 days of treatment, and this was seen together with a significant decrease in bone marrow adiposity. These data suggest that the increased bone mass is the result of an early temporal wave of amplification of a subpopulation of MSCs with both osteogenic and adipogenic potential, which is driven to osteoblast differentiation at the expense of adipogenesis.


Assuntos
Adipócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Inibidores de Proteínas Quinases/farmacologia , Fosfatase Ácida/metabolismo , Adipócitos/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/fisiologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Fibroblastos/citologia , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Glicogênio Sintase Quinase 3 beta , Isoenzimas/metabolismo , Lipase Lipoproteica/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteocalcina/genética , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , PPAR gama/genética , Inibidores de Proteínas Quinases/administração & dosagem , Radiografia , Fosfatase Ácida Resistente a Tartarato , Tíbia/anatomia & histologia , Tíbia/citologia , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , beta Catenina/metabolismo
15.
Expert Opin Drug Saf ; 7(4): 351-65, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18613800

RESUMO

BACKGROUND: Ximelagatran, the first oral agent in the new class of direct thrombin inhibitors, was withdrawn from the market due to increased rates of liver enzyme elevations in long-term treatments. Despite intensive pre clinical investigations the cellular mechanisms behind the observed hepatic effects remain unknown. OBJECTIVE: The aim of this study was to assess drug-induced cytotoxicity in primary human hepatocyte cultures by ximelagatran and other reference pharmaceutical agents with known in vivo hepatotoxic profiles. METHODS: Drugs cause liver injury by many distinct mechanisms that result in abnormal cellular functioning and different patterns of injury. To address many potential toxic mechanisms in a human-relevant model, freshly isolated human hepatocytes were used in automated imaging assays. Ximelagatran was used as a test compound to study biochemical and morphological changes in human hepatocytes. In addition, 11 control, reference and comparator compounds with known liver-toxic potential in humans were used. The response to these compounds was assessed across five different hepatocyte donor preparations. RESULTS: Cytotoxicity induced by a number of compounds was quantitatively monitored using an automated imaging technique. A variety of morphological changes in hepatocyte cytoskeleton and mitochondrial function could be identified at sublethal doses of test compounds. Doses of ximelagatran up to 500 microM did not cause a cytotoxic response in the majority of preparations and no subcytotoxic response was observed at doses below 125 microM. CONCLUSIONS: The experiments described here demonstrate that primary human hepatocytes may be used in a medium-throughput format for screening using imaging-based assays for the identification of cellular responses. Overall, it is concluded that ximelagatran did not cause a significant decrease in cell viability when incubated for 24 h at considerably higher concentrations than are found in plasma following therapeutic dosing.


Assuntos
Anticoagulantes/efeitos adversos , Azetidinas/efeitos adversos , Benzilaminas/efeitos adversos , Hepatócitos/efeitos dos fármacos , Anticoagulantes/administração & dosagem , Azetidinas/administração & dosagem , Benzilaminas/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Microscopia de Fluorescência/métodos , Mitocôndrias Hepáticas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA