Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328429

RESUMO

The mu opioid receptor has a distinct place in the opioid receptor family, since it mediates the actions of most opioids used clinically (e.g., morphine and fentanyl), as well as drugs of abuse (e.g., heroin). The single-copy mu opioid receptor gene, OPRM1, goes through extensive alternative pre-mRNA splicing to generate numerous splice variants that are conserved from rodents to humans. These OPRM1 splice variants can be classified into three structurally distinct types: (1) full-length 7 transmembrane (TM) carboxyl (C)-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Distinct pharmacological functions of these splice variants have been demonstrated by both in vitro and in vivo studies, particularly by using several unique gene-targeted mouse models. These studies provide new insights into our understanding of the complex actions of mu opioids with regard to OPRM1 alternative splicing. This review provides an overview of the studies that used these gene-targeted mouse models for exploring the functional importance of Oprm1 splice variants.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Processamento Alternativo , Analgésicos Opioides/farmacologia , Animais , Camundongos , Modelos Animais , Morfina/farmacologia , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo
2.
Biochemistry ; 60(18): 1413-1419, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32930576

RESUMO

This report describes the unique pharmacological profile of FBNTI, a potent DOR antagonist that acts as a MOR agonist via an allosteric mechanism. Binding of FBNTI to opioid receptors expressed in HEK 293 cells revealed a 190-fold greater affinity for DOR (Ki = 0.84 nM) over MOR (Ki = 160 nM). In mice, intrathecal FBNTI produced potent antinociception (ED50 = 46.9 pmol/mouse), which was antagonized by selective MOR antagonists (CTOP, ß-FNA). Autoantagonism of the MOR agonism by FBNTI was observed above the ED75 dose, suggesting antagonism of activated MOR. That FBNTI is devoid of agonism in DOR knockout mice is consistent with allosteric activation of the MOR protomer via FBNTI bound to within a MOR-DOR heteromer. This proposed mechanism is supported by calcium mobilization assays, which indicate that FBNTI selectively activates the MOR-DOR heteromer and functionally antagonizes the MOR protomer at >ED75. The unprecedented mode of MOR activation by FBNTI may be responsible for the lack of tolerance after intrathecal (i.t.) administration. FBNTI was highly effective upon topical administration to the ipsolateral hind paw in the Hargreaves assay (EC50 = 0.17 ± 0.08 µM) and without significant contralateral activity, suggesting a lack of systemic exposure.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Analgésicos Opioides/química , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Estrutura Molecular , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo
3.
Cell Mol Neurobiol ; 41(5): 1103-1118, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33389463

RESUMO

Activation of µ, δ, and κ opioid receptors by endogenous opioid peptides leads to the regulation of many emotional and physiological responses. The three major endogenous opioid peptides, ß-endorphin, enkephalins, and dynorphins result from the processing of three main precursors: proopiomelanocortin, proenkephalin, and prodynorphin. Using a knockout approach, we sought to determine whether the absence of endogenous opioid peptides would affect the expression or activity of opioid receptors in mice lacking either proenkephalin, ß-endorphin, or both. Since gene knockout can lead to changes in the levels of peptides generated from related precursors by compensatory mechanisms, we directly measured the levels of Leu-enkephalin and dynorphin-derived peptides in the brain of animals lacking proenkephalin, ß-endorphin, or both. We find that whereas the levels of dynorphin-derived peptides were relatively unaltered, the levels of Leu-enkephalin were substantially decreased compared to wild-type mice suggesting that preproenkephalin is the major source of Leu-enkephalin. This data also suggests that the lack of ß-endorphin and/or proenkephalin does not lead to a compensatory change in prodynorphin processing. Next, we examined the effect of loss of the endogenous peptides on the regulation of opioid receptor levels and activity in specific regions of the brain. We also compared the receptor levels and activity in males and females and show that the lack of ß-endorphin and/or proenkephalin leads to differential modulation of the three opioid receptors in a region- and gender-specific manner. These results suggest that endogenous opioid peptides are important modulators of the expression and activity of opioid receptors in the brain.


Assuntos
Analgésicos Opioides/metabolismo , Encéfalo/metabolismo , Peptídeos Opioides/metabolismo , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos Opioides/farmacologia
4.
Diabetologia ; 63(5): 1090, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172312

RESUMO

Unfortunately, the human islet checklist was omitted from the electronic supplementary material (ESM) linked to this paper.

5.
Diabetologia ; 63(3): 561-576, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31984442

RESUMO

AIMS/HYPOTHESIS: Peptide hormones are first synthesised as larger, inactive precursors that are converted to their active forms by endopeptidase cleavage and post-translational modifications, such as amidation. Recent, large-scale genome-wide studies have suggested that two coding variants of the amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM), are associated with impaired insulin secretion and increased type 2 diabetes risk. We aimed to elucidate the role of PAM in modulating beta cell peptide amidation, beta cell function and the development of diabetes. METHODS: PAM transcript and protein levels were analysed in mouse islets following induction of endoplasmic reticulum (ER) or cytokine stress, and PAM expression patterns were examined in human islets. To study whether haploinsufficiency of PAM accelerates the development of diabetes, Pam+/- and Pam+/+ mice were fed a low-fat diet (LFD) or high-fat diet (HFD) and glucose homeostasis was assessed. Since aggregates of the PAM substrate human islet amyloid polypeptide (hIAPP) lead to islet inflammation and beta cell failure, we also investigated whether PAM haploinsufficiency accelerated hIAPP-induced diabetes and islet amyloid formation in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. RESULTS: Immunostaining revealed high expression of PAM in alpha, beta and delta cells in human pancreatic islets. Pam mRNA and PAM protein expression were reduced in mouse islets following administration of an HFD, and in isolated islets following induction of ER stress with thapsigargin, or cytokine stress with IL-1ß, IFN-γ and TFN-α. Despite Pam+/- only having 50% PAM expression and enzyme activity as compared with Pam+/+ mice, glucose tolerance and body mass composition were comparable in the two models. After 24 weeks of HFD, both Pam+/- and Pam+/+ mice had insulin resistance and impaired glucose tolerance, but no differences in glucose tolerance, insulin sensitivity or plasma insulin levels were observed in PAM haploinsufficient mice. Islet amyloid formation and beta cell function were also similar in Pam+/- and Pam+/+ mice with beta cell expression of hIAPP. CONCLUSIONS/INTERPRETATION: Haploinsufficiency of PAM in mice does not accelerate the development of diet-induced obesity or hIAPP transgene-induced diabetes.


Assuntos
Amidina-Liases/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Oxigenases de Função Mista/genética , Amidina-Liases/fisiologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Progressão da Doença , Epistasia Genética/fisiologia , Feminino , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxigenases de Função Mista/fisiologia , Ratos , Ratos Endogâmicos Lew , Fatores de Risco
6.
Exp Cell Res ; 374(1): 38-45, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419192

RESUMO

IGFBP-3 has both stimulatory and inhibitory effects on cancer progression. The growth of EO771 mammary carcinoma cells as syngeneic tumors in C57BL/6 mice is reduced in Igfbp3-null (BP3KO) mice, suggesting that systemic IGFBP-3 enhances tumor progression. In this study we assessed the growth of EO771 cells expressing human IGFBP-3 in BP3KO mice. Cells expressing hIGFBP-3 showed decreased proliferation in vitro and increased levels of IGF-1 receptor (IGF1R) protein but not mRNA, consistent with sequestration of endogenous IGF by IGFBP-3. The growth rate of these cells was restored by exposure to IGF-1 or analogues with reduced affinity for IGFBP-3 (long Arg3-IGF-1) or IGF1R (Leu24-IGF-1). In EO771 cells implanted orthotopically into mice, hIGFBP-3 expression by the cells inhibited tumor establishment in BP3KO but not wild-type mice. For tumors that successfully established, final weight was not affected significantly by hIGFBP-3 expression. However, final tumor weight was inversely related to intratumoral T cell counts, and sera from BP3KO mice with tumors showed low-titer immunoreactivity against IGFBP-3. The contrasting effects on tumor establishment and progression of IGFBP-3 expressed by mammary carcinoma cells, compared to systemic stromal and circulating IGFBP-3, highlights the complexity of growth regulation by IGFBP-3 in mammary tumors.


Assuntos
Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Microambiente Tumoral , Imunidade Adaptativa , Tecido Adiposo/patologia , Animais , Anticorpos/sangue , Anticorpos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Mamárias Animais/sangue , Neoplasias Mamárias Animais/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microambiente Tumoral/imunologia
7.
Alcohol Clin Exp Res ; 43(10): 2167-2178, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31386211

RESUMO

BACKGROUND: The nociceptin/orphanin FQ opioid peptide (NOP) receptor and its endogenous ligand N/OFQ have been implicated in the regulation of drug and alcohol use disorders (AUD). In particular, evidence demonstrated that NOP receptor activation blocks reinforcing and motivating effects of alcohol across a range of behavioral measures, including alcohol intake, conditioned place preference, and vulnerability to relapse. METHODS: Here, we show the effects of pharmacological activation and inhibition of NOP receptors on binge-like alcohol consumption, as measured by the "drinking in the dark" (DID) model in C57BL/6J mice. RESULTS: We found that 2 potent and selective NOP agonists AT-202 (0, 0.3, 1, 3 mg/kg) and AT-312 (0, 0.3, 1 mg/kg) did not affect binge alcohol drinking at doses that do not affect locomotor activity. AT-202 also failed to alter DID behavior when administered to mice previously exposed to chronic alcohol treatment with an alcohol-containing liquid diet. Conversely, treatment with either the high affinity NOP receptor antagonist SB-612111 (0, 3, 10, 30 mg/kg) or the selective antagonist LY2817412 (0, 3, 10, 30 mg/kg) decreased binge drinking. SB-612111 was effective at all doses examined, and LY2817412 was effective at 30 mg/kg. Consistently, NOP receptor knockout mice consumed less alcohol compared to wild type. SB-612111 reduced DID and increased sucrose consumption at doses that do not appear to affect locomotor activity. However, the high dose of SB-612111 (30 mg/kg) reduced alcohol intake but failed to inhibit preference in a 2-bottle choice DID model that can assess moderate alcohol intake. CONCLUSIONS: The present results suggest that NOP receptor inhibition rather than activation may represent a valuable approach for treatment of AUD characterized by excessive alcohol consumption such as binge drinking.


Assuntos
Dissuasores de Álcool/uso terapêutico , Consumo de Bebidas Alcoólicas/prevenção & controle , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/psicologia , Animais , Consumo Excessivo de Bebidas Alcoólicas/tratamento farmacológico , Consumo Excessivo de Bebidas Alcoólicas/genética , Consumo Excessivo de Bebidas Alcoólicas/psicologia , Depressores do Sistema Nervoso Central/sangue , Cicloeptanos/farmacologia , Escuridão , Relação Dose-Resposta a Droga , Etanol/sangue , Indóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Piperidinas/farmacologia , Receptores Opioides/agonistas , Receptores Opioides/genética , Receptor de Nociceptina
8.
J Neurochem ; 143(3): 268-281, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28881029

RESUMO

To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration. Three peptides in the nucleus accumbens and seven peptides in the ventral tegmental area were significantly decreased in cocaine-treated mice. Five of these ten peptides are derived from proSAAS, a secretory pathway protein and neuropeptide precursor. To investigate whether proSAAS peptides contribute to the physiological effects of psychostimulants, we examined acute responses to cocaine and amphetamine in the open field with wild-type (WT) and proSAAS knockout (KO) mice. Locomotion was stimulated more robustly in the WT compared to mutant mice for both psychostimulants. Behavioral sensitization to amphetamine was not maintained in proSAAS KO mice and these mutants failed to sensitize to cocaine. To determine whether the rewarding effects of cocaine were altered, mice were tested in conditioned place preference (CPP). Both WT and proSAAS KO mice showed dose-dependent CPP to cocaine that was not distinguished by genotype. Taken together, these results suggest that proSAAS-derived peptides contribute differentially to the behavioral sensitization to psychostimulants, while the rewarding effects of cocaine appear intact in mice lacking proSAAS.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hipercinese/induzido quimicamente , Locomoção/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Anfetamina/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuropeptídeos , Núcleo Accumbens/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos
9.
J Pharmacol Exp Ther ; 356(2): 493-502, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26659925

RESUMO

Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity.


Assuntos
Transtorno da Compulsão Alimentar/metabolismo , Ingestão de Energia/fisiologia , Comportamento Alimentar/fisiologia , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides/fisiologia , Animais , Transtorno da Compulsão Alimentar/tratamento farmacológico , Células CHO , Cricetinae , Cricetulus , Ingestão de Energia/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/uso terapêutico , Ratos , Ratos Long-Evans , Resultado do Tratamento , Receptor de Nociceptina
10.
Synapse ; 70(10): 395-407, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27223691

RESUMO

Buprenorphine has long been classified as a mu analgesic, although its high affinity for other opioid receptor classes and the orphanin FQ/nociceptin ORL1 receptor may contribute to its other actions. The current studies confirmed a mu mechanism for buprenorphine analgesia, implicating several subsets of mu receptor splice variants. Buprenorphine analgesia depended on the expression of both exon 1-associated traditional full length 7 transmembrane (7TM) and exon 11-associated truncated 6 transmembrane (6TM) MOR-1 variants. In genetic models, disruption of delta, kappa1 or ORL1 receptors had no impact on buprenorphine analgesia, while loss of the traditional 7TM MOR-1 variants in an exon 1 knockout (KO) mouse markedly lowered buprenorphine analgesia. Loss of the truncated 6TM variants in an exon 11 KO mouse totally eliminated buprenorphine analgesia. In distinction to analgesia, the inhibition of gastrointestinal transit and stimulation of locomotor activity were independent of truncated 6TM variants. Restoring expression of a 6TM variant with a lentivirus rescued buprenorphine analgesia in an exon 11 KO mouse that still expressed the 7TM variants. Despite a potent and robust stimulation of (35) S-GTPγS binding in MOR-1 expressing CHO cells, buprenorphine failed to recruit ß-arrestin-2 binding at doses as high as 10 µM. Buprenorphine was an antagonist in DOR-1 expressing cells and an inverse agonist in KOR-1 cells. Buprenorphine analgesia is complex and requires multiple mu receptor splice variant classes but other actions may involve alternative receptors.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Nociceptividade , Splicing de RNA , Receptores Opioides mu/genética , Animais , Células CHO , Cricetinae , Cricetulus , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores Opioides mu/metabolismo , beta-Arrestina 2/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(40): 16211-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043826

RESUMO

Multiple peptide systems, including neuropeptide Y, leptin, ghrelin, and others, are involved with the control of food intake and body weight. The peptide LENSSPQAPARRLLPP (BigLEN) has been proposed to act through an unknown receptor to regulate body weight. In the present study, we used a combination of ligand-binding and receptor-activity assays to characterize a Gαi/o protein-coupled receptor activated by BigLEN in the mouse hypothalamus and Neuro2A cells. We then selected orphan G protein-coupled receptors expressed in the hypothalamus and Neuro2A cells and tested each for activation by BigLEN. G protein-coupled receptor 171 (GPR171) is activated by BigLEN, but not by the C terminally truncated peptide LittleLEN. The four C-terminal amino acids of BigLEN are sufficient to bind and activate GPR171. Overexpression of GPR171 leads to an increase, and knockdown leads to a decrease, in binding and signaling by BigLEN and the C-terminal peptide. In the hypothalamus GPR171 expression complements the expression of BigLEN, and its level and activity are elevated in mice lacking BigLEN. In mice, shRNA-mediated knockdown of hypothalamic GPR171 leads to a decrease in BigLEN signaling and results in changes in food intake and metabolism. The combination of GPR171 shRNA together with neutralization of BigLEN peptide by antibody absorption nearly eliminates acute feeding in food-deprived mice. Taken together, these results demonstrate that GPR171 is the BigLEN receptor and that the BigLEN-GPR171 system plays an important role in regulating responses associated with feeding and metabolism in mice.


Assuntos
Peso Corporal/fisiologia , Comportamento Alimentar/fisiologia , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Variância , Animais , Western Blotting , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real
12.
J Pharmacol Exp Ther ; 350(3): 710-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24970924

RESUMO

IBNtxA (3'-iodobenzoyl-6ß-naltrexamide) is a potent analgesic in mice lacking many traditional opioid side effects. In mice, it displays no respiratory depression, does not produce physical dependence with chronic administration, and shows no cross-tolerance to morphine. It has limited effects on gastrointestinal transit and shows no reward behavior. Biochemical studies indicate its actions are mediated through a set of µ-opioid receptor clone MOR-1 splice variants associated with exon 11 that lack exon 1 and contain only six transmembrane domains. Like the mouse and human, rats express exon 11-associated splice variants that also contain only six transmembrane domains, raising the question of whether IBNtxA would have a similar pharmacologic profile in rats. When given systemically, IBNtxA is a potent analgesic in rats, with an ED50 value of 0.89 mg/kg s.c., approximately 4-fold more potent than morphine. It shows no analgesic cross-tolerance in morphine-pelleted rats. IBNtxA displays no respiratory depression as measured by blood oxygen saturation. In contrast, oximetry shows that an equianalgesic dose of morphine lowers blood oxygen saturation values by 30%. IBNtxA binding is present in a number of brain regions, with the thalamus standing out with very high levels and the cerebellum with low levels. As in mice, IBNtxA is a potent analgesic in rats with a favorable pharmacologic profile and reduced side effects.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Naltrexona/análogos & derivados , Insuficiência Respiratória/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Naltrexona/metabolismo , Naltrexona/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Ligação Proteica/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 108(49): 19778-83, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22106286

RESUMO

Pain remains a pervasive problem throughout medicine, transcending all specialty boundaries. Despite the extraordinary insights into pain and its mechanisms over the past few decades, few advances have been made with analgesics. Most pain remains treated by opiates, which have significant side effects that limit their utility. We now describe a potent opiate analgesic lacking the traditional side effects associated with classical opiates, including respiratory depression, significant constipation, physical dependence, and, perhaps most important, reinforcing behavior, demonstrating that it is possible to dissociate side effects from analgesia. Evidence indicates that this agent acts through a truncated, six-transmembrane variant of the G protein-coupled mu opioid receptor MOR-1. Although truncated splice variants have been reported for a number of G protein-coupled receptors, their functional relevance has been unclear. Our evidence now suggests that truncated variants can be physiologically important through heterodimerization, even when inactive alone, and can comprise new therapeutic targets, as illustrated by our unique opioid analgesics with a vastly improved pharmacological profile.


Assuntos
Processamento Alternativo , Analgésicos Opioides/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Dor/prevenção & controle , Receptores Opioides mu/genética , Analgésicos Opioides/química , Analgésicos Opioides/metabolismo , Animais , Ligação Competitiva , Relação Dose-Resposta a Droga , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Naltrexona/química , Naltrexona/metabolismo , Medição da Dor/métodos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Fatores de Tempo
14.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798460

RESUMO

T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.

15.
Stem Cells ; 30(6): 1265-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22593020

RESUMO

Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance.


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/genética , Camundongos , Transdução de Sinais
16.
FASEB J ; 26(8): 3483-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593549

RESUMO

Pharmacological manipulation of opioid receptors alters feeding behavior. However, the individual contributions of each opioid receptor subtype on energy balance remain largely unknown. Herein, we investigated whether genetic disruption of the δ-opioid receptor (DOR) also controls energy homeostasis. Mice lacking DOR and wild-type mice were fed with standard diet and high-energy diet (HED). Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. DOR-knockout (KO) mice gained less weight (P<0.01) and had lower fat mass (P<0.01) when compared to WT mice fed an HED. Although DOR-KO mice were hyperphagic, they showed higher energy expenditure (P<0.05), which was the result of an increased activation of the thermogenic program in brown adipose tissue. The increased nonshivering thermogenesis involved the stimulation of uncoupling protein 1 (UCP1; P<0.01), peroxisome proliferator-activated receptor γ coactivator (PGC1α; P<0.05), and fibroblast growth factor 21 (FGF21; P<0.01). DOR deficiency also led to an attenuation of triglyceride content in the liver (P<0.05) in response to an HED. These findings reveal a novel role of DOR in the control of thermogenic markers and energy expenditure, and they provide a potential new therapeutic approach for the treatment of obesity.


Assuntos
Obesidade/etiologia , Receptores Opioides delta/deficiência , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético/genética , Glucose/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Termogênese/fisiologia , Triglicerídeos/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(7): 3216-21, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133770

RESUMO

Epidermal growth factor (EGF), a mitogen, also stimulates neurite extension during development, but the underlying mechanism is elusive. This study reveals a functional role for kappa opioid receptor (KOR) in EGF-stimulated neurite extension, and the underlying mechanism. EGF and activated EGF receptor (EGFR) levels are elevated in embryonic spinal cords during late gestation stages, with concurrent rise in protein levels of KOR and axon extension markers, growth-associated protein 43 (GAP43), and transient axonal glycoprotein-1 (TAG-1). Both GAP43 and TAG-1 levels are significantly lower in KOR-null (KOR(-/-)) spinal cords, and EGFR inhibitors effectively reduce the levels of KOR, GAP43, and TAG-1 in wild-type embryonic spinal cords. For KOR(-/-) or KOR-knockdown dorsal root ganglion (DRG) neurons, EGF can no longer effectively stimulate axon extension, which can be rescued by introducing a constitutive KOR expressing vector but not by a regulated KOR vector carrying its 5' untranslated region, which can be bound and repressed by growth factor receptor-bound protein 7 (Grb7). Furthermore, blocking KOR activation by application of anti-dynorphin, KOR antagonist, or EGFR inhibitor effectively reduces axon extension of DRG neurons. Thus, EGF-stimulated axon extension during development is mediated, at least partially, by specific elevation of KOR protein production at posttranscriptional level, as well as activation of KOR signaling. The result also reveals an action of EGF to augment posttranscriptional regulation of certain mRNAs during developmental stages.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neuritos/fisiologia , Receptores Opioides kappa/fisiologia , Medula Espinal/embriologia , Análise de Variância , Animais , Western Blotting , Moléculas de Adesão Celular Neuronais/metabolismo , Contactina 2 , Proteína GAP-43/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout , RNA Interferente Pequeno/genética , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Medula Espinal/metabolismo , Transfecção
18.
Am J Physiol Gastrointest Liver Physiol ; 302(8): G794-804, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22281475

RESUMO

Glucagon-like peptide-2 (GLP-2) action is dependent on intestinal expression of IGF-I, and IGF-I action is modulated by IGF binding proteins (IGFBP). Our objective was to evaluate whether the intestinal response to GLP-2 or IGF-I is dependent on expression of IGFBP-3 and -5. Male, adult mice in six treatment groups, three wild-type (WT) and three double IGFBP-3/-5 knockout (KO), received twice daily intraperitoneal injections of GLP-2 (0.5 µg/g body wt), IGF-I (4 µg/g body wt), or PBS (vehicle) for 7 days. IGFBP-3/-5 KO mice showed a phenotype of lower plasma IGF-I concentration, but greater body weight and relative mass of visceral organs, compared with WT mice (P < 0.001). WT mice showed jejunal growth with either IGF-I or GLP-2 treatment. In KO mice, IGF-I did not stimulate jejunal growth, crypt mitosis, sucrase activity, and IGF-I receptor (IGF-IR) expression, suggesting that the intestinotrophic actions of IGF-I are dependent on expression of IGFBP-3 and -5. In KO mice, GLP-2 induced significant increases in jejunal mucosal cellularity, crypt mitosis, villus height, and crypt depth that was associated with increased expression of the ErbB ligand epiregulin and decreased expression of IGF-I and IGF-IR. This suggests that in KO mice, GLP-2 action in jejunal mucosa is independent of the IGF-I system and linked with ErbB ligands. In summary, the intestinotrophic actions of IGF-I, but not GLP-2, in mucosa are dependent on IGFBP-3 and -5. These findings support the role of multiple downstream mediators for the mucosal growth induced by GLP-2.


Assuntos
Peptídeo 2 Semelhante ao Glucagon/farmacologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/farmacologia , Intestinos/efeitos dos fármacos , Análise de Variância , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Colo/anatomia & histologia , Colo/efeitos dos fármacos , Colo/crescimento & desenvolvimento , Genes erbB/fisiologia , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/crescimento & desenvolvimento , Intestino Delgado/anatomia & histologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/crescimento & desenvolvimento , Intestinos/anatomia & histologia , Intestinos/crescimento & desenvolvimento , Rim/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/genética , Tamanho do Órgão/fisiologia , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Baço/crescimento & desenvolvimento
19.
Genes Brain Behav ; 21(7): e12827, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878875

RESUMO

ProSAAS is a neuroendocrine protein that is cleaved by neuropeptide-processing enzymes into more than a dozen products including the bigLEN and PEN peptides, which bind and activate the receptors GPR171 and GPR83, respectively. Previous studies have suggested that proSAAS-derived peptides are involved in physiological functions that include body weight regulation, circadian rhythms and anxiety-like behavior. In the present study, we find that proSAAS knockout mice display robust anxiety-like behaviors in the open field, light-dark emergence and elevated zero maze tests. These mutant mice also show a reduction in cued fear and an impairment in fear-potentiated startle, indicating an important role for proSAAS-derived peptides in emotional behaviors. ProSAAS knockout mice exhibit reduced water consumption and urine production relative to wild-type controls. No differences in food consumption and overall energy expenditure were observed between the genotypes. However, the respiratory exchange ratio was elevated in the mutants during the light portion of the light-dark cycle, indicating decreased fat metabolism during this period. While proSAAS knockout mice show normal circadian patterns of activity, even upon long-term exposure to constant darkness, they were unable to shift their circadian clock upon exposure to a light pulse. Taken together, these results show that proSAAS-derived peptides modulate a wide range of behaviors including emotion, metabolism and the regulation of the circadian clock.


Assuntos
Neuropeptídeos/metabolismo , Animais , Ansiedade/genética , Ritmo Circadiano/genética , Comportamento Consumatório , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos , Receptores Acoplados a Proteínas G
20.
Neuropsychopharmacology ; 47(7): 1387-1397, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34593976

RESUMO

Tianeptine is an atypical antidepressant used in Europe to treat patients who respond poorly to selective serotonin reuptake inhibitors (SSRIs). The recent discovery that tianeptine is a mu opioid receptor (MOR) agonist has provided a potential avenue for expanding our understanding of antidepressant treatment beyond the monoamine hypothesis. Thus, our studies aim to understand the neural circuits underlying tianeptine's antidepressant effects. We show that tianeptine induces rapid antidepressant-like effects in mice after as little as one week of treatment. Critically, we also demonstrate that tianeptine's mechanism of action is distinct from fluoxetine in two important aspects: (1) tianeptine requires MORs for its chronic antidepressant-like effect, while fluoxetine does not, and (2) unlike fluoxetine, tianeptine does not promote hippocampal neurogenesis. Using cell-type specific MOR knockouts we further show that MOR expression on GABAergic cells-specifically somatostatin-positive neurons-is necessary for the acute and chronic antidepressant-like responses to tianeptine. Using central infusion of tianeptine, we also implicate the ventral hippocampus as a potential site of antidepressant action. Moreover, we show a dissociation between the antidepressant-like phenotype and other opioid-like phenotypes resulting from acute tianeptine administration such as analgesia, conditioned place preference, and hyperlocomotion. Taken together, these results suggest a novel entry point for understanding what circuit dysregulations may occur in depression, as well as possible targets for the development of new classes of antidepressant drugs.


Assuntos
Receptores Opioides mu , Tiazepinas , Analgésicos Opioides/farmacologia , Animais , Antidepressivos/farmacologia , Fluoxetina/farmacologia , Hipocampo , Humanos , Interneurônios , Camundongos , Receptores Opioides mu/agonistas , Tiazepinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA