Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Biochem Funct ; 35(1): 3-11, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28083966

RESUMO

Osteoarthritis (OA) is one of the most common diseases, which affect the correct functionality of synovial joints and is characterized by articular cartilage degradation. Limitation in the treatment of OA is mostly due to the very limited regenerative characteristic of articular cartilage once is damaged. Small animal models are of particular importance for mechanistic analysis to understand the processes that affect cartilage degradation. Combination of joint injury techniques with the use of stem cells has been shown to be an important tool for understanding the processes of cartilage degradation and regeneration. Implementation of stem cells and small animal models are important tools to help researchers to find a solution that could ameliorate and prevent the symptoms of OA.


Assuntos
Cartilagem Articular/fisiologia , Osteoartrite/patologia , Animais , Cartilagem Articular/patologia , Condrócitos/citologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Osteoartrite/terapia , Regeneração/fisiologia , Transplante de Células-Tronco , Células-Tronco/citologia
2.
Proc Natl Acad Sci U S A ; 107(5): 2054-9, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20080592

RESUMO

We report a mouse model of multiple osteochondromas (MO), an autosomal dominant disease in humans, also known as multiple hereditary exostoses (MHE or HME) and characterized by the formation of cartilage-capped osseous growths projecting from the metaphyses of endochondral bones. The pathogenesis of these osteochondromas has remained unclear. Mice heterozygous for Ext1 or Ext2, modeling the human genotypes that cause MO, occasionally develop solitary osteochondroma-like structures on ribs [Lin et al. (2000) Dev Biol 224(2):299-311; Stickens et al. (2005) Development 132(22):5055-5068]. Rather than model the germ-line genotype, we modeled the chimeric tissue genotype of somatic loss of heterozygosity (LOH), by conditionally inactivating Ext1 via head-to-head loxP sites and temporally controlled Cre-recombinase in chondrocytes. These mice faithfully recapitulate the human phenotype of multiple metaphyseal osteochondromas. We also confirm homozygous disruption of Ext1 in osteochondroma chondrocytes and their origin in proliferating physeal chondrocytes. These results explain prior modeling failures with the necessity for somatic LOH in a developmentally regulated cell type.


Assuntos
Neoplasias Ósseas/etiologia , Condrócitos/metabolismo , Exostose Múltipla Hereditária/etiologia , N-Acetilglucosaminiltransferases/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proliferação de Células , Condrócitos/patologia , Modelos Animais de Doenças , Éxons , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/patologia , Marcação de Genes , Homozigoto , Humanos , Perda de Heterozigosidade , Camundongos , Camundongos Transgênicos , Mutação , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Fenótipo
3.
Bone ; 111: 71-81, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545125

RESUMO

Multiple osteochondromas (MO) syndrome is a dominant autosomal bone disorder characterized by the formation of cartilage-capped bony outgrowths that develop at the juxtaposition of the growth plate of endochondral bones. MO has been linked to mutations in either EXT1 or EXT2, two glycosyltransferases required for the synthesis of heparan sulfate (HS). The establishment of mouse mutants demonstrated that a clonal, homozygous loss of Ext1 in a wild type background leads to the development of osteochondromas. Here we investigate mechanisms that might contribute to the variation in the severity of the disease observed in human patients. Our results show that residual amounts of HS are sufficient to prevent the development of osteochondromas strongly supporting that loss of heterozygosity is required for osteochondroma formation. Furthermore, we demonstrate that different signaling pathways affect size and frequency of the osteochondromas thereby modulating the severity of the disease. Reduced Fgfr3 signaling, which regulates proliferation and differentiation of chondrocytes, increases osteochondroma number, while activated Fgfr3 signaling reduces osteochondroma size. Both, activation and reduction of Wnt/ß-catenin signaling decrease osteochondroma size and frequency by interfering with the chondrogenic fate of the mutant cells. Reduced Ihh signaling does not change the development of the osteochondromas, while elevated Ihh signaling increases the cellularity and inhibits chondrocyte differentiation in a subset of osteochondromas and might thus predispose osteochondromas to the transformation into chondrosarcomas.


Assuntos
Exostose Múltipla Hereditária/patologia , Proteínas Hedgehog/fisiologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/fisiologia , beta Catenina/fisiologia , Animais , Diferenciação Celular , Condrócitos/patologia , Modelos Animais de Doenças , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/metabolismo , Lâmina de Crescimento/patologia , Proteínas Hedgehog/genética , Heparitina Sulfato/metabolismo , Humanos , Perda de Heterozigosidade , Camundongos , N-Acetilglucosaminiltransferases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/genética
4.
Nat Genet ; 47(11): 1363-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26437029

RESUMO

Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes.


Assuntos
Deficiências do Desenvolvimento/genética , Genes Recessivos , Estudos de Associação Genética/métodos , Predisposição Genética para Doença/genética , Proteínas de Ciclo Celular/genética , Deficiências do Desenvolvimento/classificação , Exoma/genética , Saúde da Família , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Metaloproteinases da Matriz Secretadas/genética , Linhagem , Fenótipo , Proteína-Arginina N-Metiltransferases/genética , Análise de Sequência de DNA/métodos , Ubiquitina-Proteína Ligases/genética , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA