Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(12): 3238-3244, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35512389

RESUMO

MOTIVATION: Identification and removal of micro-scale residual tumor tissue during brain tumor surgery are key for survival in glioma patients. For this goal, High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) spectroscopy-based assessment of tumor margins during surgery has been an effective method. However, the time required for metabolite quantification and the need for human experts such as a pathologist to be present during surgery are major bottlenecks of this technique. While machine learning techniques that analyze the NMR spectrum in an untargeted manner (i.e. using the full raw signal) have been shown to effectively automate this feedback mechanism, high dimensional and noisy structure of the NMR signal limits the attained performance. RESULTS: In this study, we show that identifying informative regions in the HRMAS NMR spectrum and using them for tumor margin assessment improves the prediction power. We use the spectra normalized with the ERETIC (electronic reference to access in vivo concentrations) method which uses an external reference signal to calibrate the HRMAS NMR spectrum. We train models to predict quantities of metabolites from annotated regions of this spectrum. Using these predictions for tumor margin assessment provides performance improvements up to 4.6% the Area Under the ROC Curve (AUC-ROC) and 2.8% the Area Under the Precision-Recall Curve (AUC-PR). We validate the importance of various tumor biomarkers and identify a novel region between 7.97 ppm and 8.09 ppm as a new candidate for a glioma biomarker. AVAILABILITY AND IMPLEMENTATION: The code is released at https://github.com/ciceklab/targeted_brain_tumor_margin_assessment. The data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.5781769. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Imageamento por Ressonância Magnética
2.
Anal Chem ; 94(23): 8226-8233, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35657080

RESUMO

The use of 13C-labeled molecular probes is essential to explore altered metabolic pathways in human pathologies. The analysis of the different 13C isotopologues resulting from these changes in metabolic pathways is essential to understand the different biological processes involved. We propose an NMR methodology consisting of eight different NMR experiments performed under HRMAS conditions to explore metabolic pathways in unprocessed pathological cells and tissues. This methodology has the potential to study human pathologies in the medical field and to enable the analysis of the mode of action of therapeutic treatments.


Assuntos
Imageamento por Ressonância Magnética , Sondas Moleculares , Humanos , Espectroscopia de Ressonância Magnética/métodos , Redes e Vias Metabólicas
3.
PLoS Comput Biol ; 16(11): e1008184, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175838

RESUMO

Complete resection of the tumor is important for survival in glioma patients. Even if the gross total resection was achieved, left-over micro-scale tissue in the excision cavity risks recurrence. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) technique can distinguish healthy and malign tissue efficiently using peak intensities of biomarker metabolites. The method is fast, sensitive and can work with small and unprocessed samples, which makes it a good fit for real-time analysis during surgery. However, only a targeted analysis for the existence of known tumor biomarkers can be made and this requires a technician with chemistry background, and a pathologist with knowledge on tumor metabolism to be present during surgery. Here, we show that we can accurately perform this analysis in real-time and can analyze the full spectrum in an untargeted fashion using machine learning. We work on a new and large HRMAS NMR dataset of glioma and control samples (n = 565), which are also labeled with a quantitative pathology analysis. Our results show that a random forest based approach can distinguish samples with tumor cells and controls accurately and effectively with a median AUC of 85.6% and AUPR of 93.4%. We also show that we can further distinguish benign and malignant samples with a median AUC of 87.1% and AUPR of 96.1%. We analyze the feature (peak) importance for classification to interpret the results of the classifier. We validate that known malignancy biomarkers such as creatine and 2-hydroxyglutarate play an important role in distinguishing tumor and normal cells and suggest new biomarker regions. The code is released at http://github.com/ciceklab/HRMAS_NC.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Aprendizado de Máquina , Espectroscopia de Ressonância Magnética/métodos , Margens de Excisão , Algoritmos , Biópsia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Estudos de Coortes , Glioma/patologia , Glioma/cirurgia , Humanos , Período Intraoperatório
4.
Anal Chem ; 92(17): 11516-11519, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32815363

RESUMO

High-resolution magic-angle-spinning 1H NMR spectroscopy (HR-MAS NMR) is a well-established technique for assessing the biochemical composition of intact tissue samples. In this study, we utilized a method based on HR-MAS NMR spectroscopy with slice localization (SLS) to achieve spatial resolution of metabolites. The obtained 7 slice spectra from each of the model samples (i.e., chicken thigh muscle with skin and murine renal biopsy including medulla (M) and cortex (C)) showed distinct metabolite compositions. Furthermore, we analyzed previously acquired 1H HR-MAS NMR spectra of separated cortex and medulla samples using multivariate statistical methods. Concentrations of glycerophosphocholine (GPC) were found to be significantly higher in the renal medulla compared to the cortex. Using GPC as a biomarker, we identified the tissue slices that were predominantly the cortex or medulla. This study demonstrates that HR-MAS SLS combined with multivariate statistics has the potential for identifying tissue heterogeneity and detailed biochemical characterization of complex tissue samples.


Assuntos
Biomarcadores/análise , Glicerilfosforilcolina/análise , Espectroscopia de Ressonância Magnética/métodos , Animais , Biópsia , Técnicas Biossensoriais , Galinhas , Córtex Renal/química , Metabolômica , Camundongos Endogâmicos C57BL , Análise Multivariada , Músculos/química , Pele/química , Coxa da Perna
5.
Magn Reson Med ; 82(1): 62-83, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30847981

RESUMO

PURPOSE: The aim of this study is to generate a metabolic database for biomedical studies of biopsy specimens by high-resolution magic angle spinning (HRMAS) nuclear MR (NMR). METHODS: Seventy-six metabolites, classically found in human biopsy samples, were prepared in aqueous solution at a known concentration and analyzed by HRMAS NMR. The spectra were recorded under the same conditions as the ones used for the analysis of biopsy specimens routinely performed in our hospital. RESULTS: For each metabolite, a complete set of NMR spectra (1D 1 H, 1D 1 H-CPMG, 2D J-Resolved, 2D TOCSY, and 2D 1 H-13 C HSQC) was recorded at 500 MHz and 277 K. All spectra were manually assigned using the information contained in the different spectra and existing databases. Experiments to measure the T1 and the T2 of the different protons present in the 76 metabolites were also recorded. CONCLUSION: This new HRMAS metabolic database is a useful tool for all scientists working on human biopsy specimens, particularly in the field of oncology. It will make the identification of metabolites in biopsy specimens faster and more reliable. Additionally, the knowledge of the T1 and T2 values will allow to obtain a more accurate quantification of the metabolites present in biopsy specimens.


Assuntos
Biópsia , Bases de Dados Factuais , Imageamento por Ressonância Magnética , Metabolômica , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Sistemas de Gerenciamento de Base de Dados , Humanos , Metaboloma/fisiologia
6.
Metabolomics ; 15(5): 69, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31037432

RESUMO

INTRODUCTION: The identification of frequent acquired mutations shows that patients with oligodendrogliomas have divergent biology with differing prognoses regardless of histological classification. A better understanding of molecular features as well as their metabolic pathways is essential. OBJECTIVES: The aim of this study was to examine the relationship between the tumor metabolome, six genomic aberrations (isocitrate dehydrogenase1 [IDH1] mutation, 1p/19q codeletion, tumor protein p53 [TP53] mutation, O6-methylguanin-DNA methyltransferase [MGMT] promoter methylation, epidermal growth factor receptor [EGFR] amplification, phosphate and tensin homolog [PTEN] methylation), and the patients' survival time. METHODS: We applied 1H high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy to 72 resected oligodendrogliomas. RESULTS: The presence of IDH1, TP53, 1p19q codeletion, MGMT promoter methylation reduced the relative risk of death, whereas PTEN methylation and EGFR amplification were associated with poor prognosis. Increased concentration of 2-hydroxyglutarate (2HG), N-acetyl-aspartate (NAA), myo-inositol and the glycerophosphocholine/phosphocholine (GPC/PC) ratio were good prognostic factors. Increasing the concentration of serine, glycine, glutamate and alanine led to an increased relative risk of death. CONCLUSION: HRMAS NMR spectroscopy provides accurate information on the metabolomics of oligodendrogliomas, making it possible to find new biomarkers indicative of survival. It enables rapid characterization of intact tissue and could be used as an intraoperative method.


Assuntos
Metabolômica , Oligodendroglioma/genética , Oligodendroglioma/metabolismo , Adulto , Humanos , Espectroscopia de Ressonância Magnética , Índice de Gravidade de Doença , Análise de Sobrevida , Fatores de Tempo
7.
Magn Reson Chem ; 55(2): 106-114, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27514284

RESUMO

Ligand-based 19 F NMR screening represents an efficient approach for performing binding assays. The high sensitivity of the methodology to receptor binding allows the detection of weak affinity ligands. The observable NMR parameters that are typically used are the 19 F transverse relaxation rate and isotropic chemical shift. However, there are few cases where the 19 F longitudinal relaxation rate should also be used. A theoretical and experimental analysis of the 19 F NMR transverse and longitudinal relaxation rates at different magnetic fields is presented along with proposed methods for improving the sensitivity and dynamic range of these experiments applied to fragment-based screening. Copyright © 2016 John Wiley & Sons, Ltd.

8.
Analyst ; 140(12): 3942-6, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25946235

RESUMO

We demonstrate the acquisition of ultrafast 2D NMR spectra of semi-solid samples, with a high-resolution magic-angle-spinning setup. Using a recent double-quantum NMR pulse sequence in optimised synchronisation conditions, high-quality 2D spectra can be recorded for a sample under magic-angle spinning. An illustration is given with a semi-solid sample of banana pulp.

9.
Int J Cancer ; 135(7): 1574-85, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24535843

RESUMO

The process of hepatocarcinogenesis in the diethylnitrosamine (DEN) initiation/phenobarbital (PB) promotion mouse model involves the selective clonal outgrowth of cells harboring oncogene mutations in Ctnnb1, while spontaneous or DEN-only-induced tumors are often Ha-ras- or B-raf-mutated. The molecular mechanisms and pathways underlying these different tumor sub-types are not well characterized. Their identification may help identify markers for xenobiotic promoted versus spontaneously occurring liver tumors. Here, we have characterized mouse liver tumors harboring either Ctnnb1 or Ha-ras mutations via integrated molecular profiling at the transcriptional, translational and post-translational levels. In addition, metabolites of the intermediary metabolism were quantified by high resolution (1)H magic angle nuclear magnetic resonance. We have identified tumor genotype-specific differences in mRNA and miRNA expression, protein levels, post-translational modifications, and metabolite levels that facilitate the molecular and biochemical stratification of tumor phenotypes. Bioinformatic integration of these data at the pathway level led to novel insights into tumor genotype-specific aberrant cell signaling and in particular to a better understanding of alterations in pathways of the cell intermediary metabolism, which are driven by the constitutive activation of the ß-Catenin and Ha-ras oncoproteins in tumors of the two genotypes.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Genes ras/genética , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Metabolômica , Mutação/genética , beta Catenina/genética , Animais , Biomarcadores Tumorais/metabolismo , Western Blotting , Redes e Vias Metabólicas , Camundongos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Anal Chem ; 86(21): 10749-54, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25286333

RESUMO

High-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) is an essential tool to characterize a variety of semisolid systems, including biological tissues, with virtually no sample preparation. The "non-destructive" nature of NMR is typically compromised, however, by the extreme centrifugal forces experienced under conventional HR-MAS frequencies of several kilohertz. These features limit the usefulness of current HR-MAS approaches for fragile samples. Here, we introduce a full protocol for acquiring high-quality HR-MAS NMR spectra of biological tissues at low spinning rates (down to a few hundred hertz). The protocol first consists of a carefully designed sample preparation, which yields spectra without significant spinning sidebands at low spinning frequency for several types of sample holders, including the standard disposable inserts classically used in HR-MAS NMR-based metabolomics. Suppression of broad spectral features is then achieved using a modified version of the recently introduced PROJECT experiment with added water suppression and rotor synchronization, which deposits limited power in the sample and which can be suitably rotor-synchronized at low spinning rates. The performance of the slow HR-MAS NMR procedure is demonstrated on conventional (liver tissue) and very delicate (fish eggs) samples, for which the slow-spinning conditions are shown to preserve the structural integrity and to minimize intercompartmental leaks of metabolites. Taken together, these results expand the applicability and reliability of HR-MAS NMR spectroscopy. These results have been obtained at 400 and 600 MHz and suggest that high-quality slow HR-MAS spectra can be expected at higher magnetic fields using the described protocol.


Assuntos
Fígado/química , Espectroscopia de Ressonância Magnética/métodos , Animais , Bovinos , Feminino
11.
Chem Res Toxicol ; 26(1): 136-45, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23256819

RESUMO

High-resolution magic angle spinning (HR-MAS) is a nuclear magnetic resonance (NMR) technique that enables the characterization of metabolic phenotypes/metabolite profiles of cells, tissues, and organs, under both normal and pathological conditions, without resorting to time-consuming extraction techniques. In this article, we explore a new domain of application of HR-MAS, namely, reconstructed human epidermis (RHE) and the in situ observation of chemical interactions between skin sensitizers and nucleophilic amino acids. First, the preparation, storage, and analysis of RHE were optimized, and this work demonstrated that HR-MAS NMR was well adapted for investigating RHE with spectra of good quality allowing qualitative as well as quantitative studies of metabolites. Second, in order to study the response of RHE to chemical sensitizers, the ((13)C)methyldodecanesulfonate was chosen as an NMR probe, and we compared adducts formed on human serum albumin (HSA) in solution and adducts formed in RHE. Thus, while the modification of proteins or peptides in solution takes several days to lead to a significant amount of modification, in RHE the modifications of nucleophilic amino acids were observable already at 24 h. The chemioselectivity also appeared to be different with major modifications taking place on histidine, methionine, and cysteine residues in RHE, while on HSA, significant modifications were observed on lysine residues with the formation of methylated and dimethylated amino groups. We thus demonstrated that RHE could be used to investigate in situ chemical interactions taking place between skin sensitizers and nucleophilic amino acids. This opens perspectives for the molecular understanding of the skin immune system activation by sensitizing chemicals.


Assuntos
Alérgenos/química , Aminoácidos/química , Alcanossulfonatos/química , Alcanossulfonatos/toxicidade , Alérgenos/metabolismo , Aminoácidos/metabolismo , Isótopos de Carbono/química , Técnicas de Cultura de Células , Linhagem Celular , Cisteína/química , Cisteína/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Histidina/química , Histidina/metabolismo , Humanos , Metionina/química , Metionina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Albumina Sérica/química , Albumina Sérica/metabolismo
12.
Magn Reson Med ; 68(4): 1026-38, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22161974

RESUMO

Standards are needed to control the quality of the lungs from nonheart-beating donors as potential grafts. This was here assessed using the metabolomics 1H high-resolution magic angle spinning NMR spectroscopy. Selective perfusion of the porcine bilung block was set up 30 min after cardiac arrest with cold Perfadex®. Lung alterations were analyzed at 3, 6, and 8 h of cold ischemia as compared to baseline and to nonperfused lung. Metabolomics analysis of lung biopsies allowed identification of 35 metabolites. Levels of the majority of the metabolites increased over time at 4°C without perfusion, indicating cellular degradation, whereas levels of glutathione decreased. When lung was perfused at 4°C, levels of the majority of the metabolites remained stable, including levels of glutathione. Levels of uracil by contrast showed a reverse profile, as its signal increased over time in the absence of perfusion while being totally absent in perfused samples. Our results showed glutathione and uracil as potential biomarkers for the quality of the lung. The metabolomics 1H high-resolution magic angle spinning NMR spectroscopy can be efficiently applied for the assessment of the quality of the lung as an original technique characterized by a rapid assessment of intact biopsy samples without extraction and can be implemented in hospital environment.


Assuntos
Transplante de Pulmão , Pulmão/fisiologia , Espectroscopia de Ressonância Magnética/métodos , Metaboloma/fisiologia , Proteoma/análise , Sobrevivência de Tecidos/fisiologia , Animais , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin , Suínos
13.
Pediatr Blood Cancer ; 56(1): 24-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20949594

RESUMO

BACKGROUND: The aim of this preliminary study is to characterize by ¹H high-resolution magic angle spinning NMR spectroscopy (HRMAS) the metabolic content of intact biopsy samples obtained from 12 patients suffering from neuroblastoma (NB). PROCEDURE: The biochemical NB profile was first compared to normal adrenal medulla. In a second step, the relationship between the tumor metabolic profile and the patients' clinical data was investigated. RESULTS: A higher level of creatine, glutamine/glutamate, acetate and glycine characterized NB biopsies while healthy adrenal medulla tissue contained adrenaline and a larger amount of ascorbic acid. Adrenaline, which was undetectable in NB spectra, represented the metabolic signature of normal adrenal medulla. NB from patients younger than 12 months contained a higher level of acetate and lysine. Conversely, higher amounts of glutathione, glutamate, myo-inositol, glycine, serine and ascorbic acid were detected in NB samples belonging to younger children. Glutamine/glutamate, aspartate, creatine, glycine were characteristic of stage I-II NB. Acetate and creatine were characteristic of stage IV NB. Finally, a relatively higher amount of aspartate, succinate, and glutathione was detected in patients alive without active disease after a mean follow-up of 7 years whereas a higher concentration of acetate and taurine was characteristic of patients with worse prognosis. CONCLUSIONS: Our preliminary results suggest the existence of a complex metabolic reality in NB, probably representative of tumor behavior. However, the real impact of these promising results should be assessed by long-term prospective studies on a larger cohort of patients.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Neuroblastoma/metabolismo , Medula Suprarrenal/metabolismo , Biópsia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estadiamento de Neoplasias , Neuroblastoma/patologia
14.
Magn Reson Chem ; 49(4): 199-202, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21387401

RESUMO

Direct and competition ligand-based NMR experiments are often used in the screening of chemical fragment libraries against a protein target due to the high relative sensitivity of NMR for protein-binding events. A plethora of NMR methods has been proposed for this purpose. Two of these techniques are the (19)F T(2) filter and the (1)H selective T(2) filter experiments. Modifications of the pulse sequences of these experiments have resulted in a ∼2-fold reduction in the experiment time thus allowing an increase in the screening throughput and making NMR an attractive technique for screening large compound collections.


Assuntos
Ligação Competitiva , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Flúor/química , Humanos , Prótons , Albumina Sérica/química , Solubilidade , Triptofano/química
15.
J Magn Reson ; 187(1): 10-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17448715

RESUMO

A novel coil, called Z coil, is presented. Its function is to reduce the strong thermal effects produced by rf heating at high frequencies. The results obtained at 500MHz in a 50 microl sample prove that the Z coil can cope with salt concentrations that are one order of magnitude higher than in traditional solenoidal coils. The evaluation of the rf field is performed by numerical analysis based on first principles and by carrying out rf field measurements. Reduction of rf heating is probed with a DMPC/DHPC membrane prepared in buffers of increasing salt concentrations. The intricate correlation that exists between the magnetic and electric field is presented. It is demonstrated that, in a multiply tuned traditional MAS coil, the rf electric field E(1) cannot be reduced without altering the rf magnetic field. Since the detailed distribution differs when changing the coil geometry, a comparison involving the following three distinct designs is discussed: (1) a regular coil of 5.5 turns, (2) a variable pitch coil with the same number of turns, (3) the new Z coil structure. For each of these coils loaded with samples of different salt concentrations, the nutation fields obtained at a certain power level provide a basis to discuss the impact of the dielectric and conductive losses on the rf efficiency.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Simulação por Computador , Dimiristoilfosfatidilcolina/química , Campos Eletromagnéticos , Membranas Artificiais , Modelos Químicos , Éteres Fosfolipídicos/química , Temperatura
16.
J Magn Reson ; 174(1): 2-26, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15809168

RESUMO

High-resolution magic angle spinning (HRMAS) has become an extremely versatile tool to study heterogeneous systems. HRMAS relies on magic angle spinning of the sample and on pulse sequences originally developed for liquid state NMR. In most cases the outcome of the experiment is conform to what is expected from high-resolution liquid state NMR spectroscopy. However in some instances, experiments run under MAS can produce some very puzzling results. After reviewing the basic hardware which is at the heart of HRMAS spectroscopy, we show that the origin of this behavior lies in the natural time-dependence of some physical quantities imparted by the rotation. We focus in particular on the effects of B1 inhomogeneities on the nutation, the (90 degrees)+x-t-(90 degrees )-x and the MLEV16 experiments. Different models of radiofrequency distribution of B1 fields in a solenoidal coil are derived from simple geometrical considerations. These models are shown by NMR spin dynamics calculations to reproduce the experimental NMR results. They are also consistent with electromagnetic simulations of the B1 field distribution inside a solenoidal coil.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Fenômenos Eletromagnéticos , Espectroscopia de Ressonância Magnética/instrumentação , Matemática , Processamento de Sinais Assistido por Computador
17.
J Magn Reson ; 173(1): 84-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15705516

RESUMO

High resolution magic angle spinning (HRMAS) has become an extremely versatile tool to study heterogeneous systems. HRMAS relies on magic angle spinning of the sample to average out to zero magnetic susceptibility differences in the sample and to obtain resonance linewidths approaching those of liquid state NMR. Shimming such samples therefore becomes an important issue. By analyzing the different sources of magnetic field perturbations present in a sample under MAS conditions, we propose a simple protocol to obtain optimum shim settings in HRMAS. In the case of aqueous samples, we show that the lock level cannot be used as a reliable indicator of the quality of the shims at high spinning speeds. This effect is explained by the presence of temperature gradients imparted by the sample rotation.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Politetrafluoretileno/química , Processamento de Sinais Assistido por Computador , Temperatura , Água/química , Zircônio/química
18.
J Magn Reson ; 159(1): 76-81, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12468306

RESUMO

Excitation sculpting was first introduced as a way to efficiently suppress solvent signals. It requires a pulse sequence that acts as a null pulse at the solvent-resonance frequency and as an inversion pulse everywhere else. In this article, it is shown that such a goal can be achieved starting with "top-hat" inversion shaped pulses such as I-BURP-2 or gaussian cascade G3. The result is a Globally Antisymmetric Selective Pulse, or GASP. Numerical optimization was used to extend the performance of such pulses. Multifrequency signal suppression was shown to be possible through application of successive excitation sculpting modules.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Solventes , Cromatografia , Análise Numérica Assistida por Computador
19.
J Magn Reson ; 157(1): 43-51, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12202131

RESUMO

Rotational resonance and radiofrequency-driven dipolar recoupling (RFDR) experiments have been used to recover the weak proton dipolar interaction present in peptides bound to swollen resins spun at the magic angle. The intensity of the correlation peaks obtained using these sequences is shown to be significantly stronger than the one obtained using the classical NOESY experiment. In addition, it is found that during the relatively long mixing times required to transfer magnetization in such soft materials, the RFDR sequence also achieves magnetization transfer via the scalar J-coupling.


Assuntos
Vírus da Febre Aftosa/química , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Resinas Vegetais/química , Sequência de Aminoácidos
20.
Sci Rep ; 3: 3349, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24284435

RESUMO

High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Animais , Bovinos , Centrifugação/métodos , Fígado/química , Fígado/citologia , Fenilalanina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA