Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569818

RESUMO

Varroa destructor, a major ectoparasite of the Western honey bee Apis mellifera, is a widespread pest that damages colonies in the Northern Hemisphere. Throughout their lifecycle, V. destructor females feed on almost every developmental stage of their host, from the last larval instar to the adult. The parasite is thought to feed on hemolymph and fat body, although its exact diet and nutritional requirements are poorly known. Using artificial Parafilm™ dummies, we explored the nutrition of V. destructor females and assessed their survival when fed on hemolymph from bee larvae, pupae, or adults. We compared the results with mites fed on synthetic solutions or filtered larval hemolymph. The results showed that the parasites could survive for several days or weeks on different diets. Bee larval hemolymph yielded the highest survival rates, and filtered larval plasma was sufficient to maintain the mites for 14 days or more. This cell-free solution therefore theoretically contains all the necessary nutrients for mite survival. Because some bee proteins are known to be hijacked without being digested by the parasite, we decided to run a proteomic analysis of larval honey bee plasma to highlight the most common proteins in our samples. A list of 54 proteins was compiled, including several energy metabolism proteins such as Vitellogenin, Hexamerin, or Transferrins. These molecules represent key nutrient candidates that could be crucial for V. destructor survival.

2.
Parasitol Res ; 118(10): 2935-2943, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31486946

RESUMO

Varroa destructor, an acarian parasite of the Western honey bee Apis mellifera L., is a serious threat to colonies and beekeeping worldwide. The parasite lifecycle occurs in close synchrony with its host development. The females have to discriminate between different developmental stages of the host and trigger an appropriate behavioral response. Many studies have focused on these behavioral aspects, whether it is the choice of a precise host stage or the reproduction of female mites. Behavioral tests often require laboratory settings that are very different from the mite's environment. Our first experiment was designed to study the impact of the surface of test arena on the mite behavior. We found that plastic from Petri dishes commonly used as test arenas disturbs the female mites and can cause death. We searched for a substrate that does not harm mites and found that gelatin-coated plastic Petri dishes responded to these expectations. We then investigated the host choice behavior of phoretic mites confronted with larval stages of the bee on gelatin-coated arenas to watch if the well-documented orientation towards 5th instar larva was observable in our conditions. Pupal stages were included in the host choice experiments, initially to act as neutral stimuli. As white-eyed pupae were revealed attractive to the mite, several pupal stages were then included in a series of host choice bioassays. These additional experiments tend to show that the positive response to the white-eyed pupa stage depends on cues only delivered by living pupae. Further investigation on the nature and impact of these cues are needed as they could shed light on key signals involved in the parasite lifecycle.


Assuntos
Abelhas/parasitologia , Comportamento de Busca por Hospedeiro/fisiologia , Varroidae/fisiologia , Animais , Abelhas/crescimento & desenvolvimento , Feminino , Gelatina , Interações Hospedeiro-Parasita , Larva/crescimento & desenvolvimento , Larva/parasitologia , Pupa/crescimento & desenvolvimento , Pupa/parasitologia
3.
Exp Appl Acarol ; 74(1): 25-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29230627

RESUMO

As the main source of lipids and proteins in honey bees, pollen is a major nutrient provider involved in development and health and has been studied for tolerance stimulation against pathogens and parasites. In the case of Varroa destructor Anderson & Trueman (Acari, Mesostigmata: Varroidae) parasitization, the lack of a complete laboratory system to rear both the bee larva and the acarian parasite limited the studies concerning larval nutrition effects on the bee tolerance and resistance against varroatosis. Due to the development of this complete rearing protocol, we managed to feed young honey bee larvae with pollen supplemented solutions and to study the effect on their later development under parasitism conditions. In our experimental conditions, pollen influences neither the deformity rate, nor the survival of bees both parasitized and unparasitized. However, pollen extract supplementation seems to significantly impact the weight of the spinning bee larvae without having an effect on the physiological weight loss during pupation, so the differences found at the larval stage remain the same as at emergence. Varroa has a deleterious effect on bee pupae and led to a steady increase of the physiological weight loss experienced during metamorphosis. Interestingly, this ponderal loss associated with Varroa parasitization seems to be reduced in the polyfloral pollen supplementation condition. Altogether, this work is to our knowledge the first to study in laboratory conditions the impact of larval nutrition on the tolerance to parasitism. A diverse pollen diet may be beneficial to the bees' tolerance against V. destructor parasitism.


Assuntos
Abelhas/parasitologia , Interações Hospedeiro-Parasita , Pólen/fisiologia , Varroidae/fisiologia , Ração Animal/análise , Animais , Abelhas/crescimento & desenvolvimento , Dieta , Suplementos Nutricionais/análise , Larva/crescimento & desenvolvimento , Larva/parasitologia , Longevidade , Extratos Vegetais/administração & dosagem , Pupa/crescimento & desenvolvimento , Pupa/parasitologia
4.
Parasite ; 30: 49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37962478

RESUMO

Olfaction is a major sense in Varroa destructor. In natural conditions, it is known that this honey bee parasite relies on kairomones to detect its host or to reproduce. Yet, in artificial conditions, the parasite is able to feed and survive for a few days even though most honey bee pheromones are lacking. Other key cues are thus probably involved in V. destructor perception of its close environment. Here, we used several artificial feeding designs to explore the feeding behaviour of the parasite when it is deprived of olfactory cues. We found that V. destructor is still able to feed only guided by physical cues. The detection of the food source seems to be shape-related as a 3D membrane triggers arrestment and exploration more than a 2D membrane. The tactile sense of V. destructor could thus be essential to detect a feeding site, although further studies are needed to assess the importance of this sense combined with olfaction in natural conditions.


Title: Varroa destructor s'appuie sur des signaux physiques pour se nourrir dans des conditions artificielles. Abstract: L'olfaction est un sens prépondérant chez Varroa destructor. En conditions naturelles, ce parasite de l'abeille domestique dépend en effet de kairomones qui lui permettent de détecter son hôte ou de se reproduire. Pourtant, lorsqu'il se retrouve en conditions artificielles, le parasite se nourrit et survit plusieurs jours malgré l'absence de la majorité des phéromones émises par l'abeille. Des indices clés autres qu'olfactifs sont donc très probablement impliqués dans la perception de l'environnement de V. destructor. Dans cette étude, plusieurs dispositifs d'alimentation artificielle ont été testés afin d'explorer le comportement de nourrissage du parasite lorsqu'il est privé d'indices olfactifs. Les résultats montrent que V. destructor est tout à fait capable de se nourrir en étant uniquement guidé par des indices physiques. En l'occurrence, la détection de la source nutritive semble être liée à sa forme puisqu'une membrane 3D provoque des comportements exploratoires plus prononcés qu'une membrane plane (2D). Le sens du toucher serait donc essentiel à V. destructor pour trouver son site de nourrissage. Des études complémentaires permettraient néanmoins d'évaluer les importances relatives des sens olfactif et tactile en conditions naturelles.


Assuntos
Varroidae , Animais , Abelhas , Sinais (Psicologia) , Comportamento Alimentar
5.
Parasit Vectors ; 15(1): 333, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151583

RESUMO

BACKGROUND: Varroa destructor is the major ectoparasite of the western honey bee (Apis mellifera). Through both its parasitic life-cycle and its role as a vector of viral pathogens, it can cause major damage to honey bee colonies. The deformed wing virus (DWV) is the most common virus transmitted by this ectoparasite, and the mite is correlated to increased viral prevalence and viral loads in infested colonies. DWV variants A and B (DWV-A and DWV-B, respectively) are the two major DWV variants, and they differ both in their virulence and transmission dynamics. METHODS: We studied the transmission of DWV between bees, parasitic mites and their offspring by quantifying DWV loads in bees and mites collected in in vitro and in situ environments. In vitro, we artificially transmitted DWV-A to mites and quantified both DWV-A and DWV-B in mites and bees. In situ, we measured the natural presence of DWV-B in bees, mites and mites' offspring. RESULTS: Bee and mite viral loads were correlated, and mites carrying both variants were associated with higher mortality of the infected host. Mite infestation increased the DWV-B loads and decreased the DWV-A loads in our laboratory conditions. In situ, viral quantification in the mite offspring showed that, after an initially non-infected egg stage, the DWV-B loads were more closely correlated with the foundress (mother) mites than with the bee hosts. CONCLUSIONS: The association between mites and DWV-B was highlighted in this study. The parasitic history of a mite directly impacts its DWV infection potential during the rest of its life-cycle (in terms of variant and viral loads). Regarding the mite's progeny, we hypothesize that the route of contamination is likely through the feeding site rather than by vertical transmission, although further studies are needed to confirm this hypothesis.


Assuntos
Infestações por Ácaros , Vírus de RNA , Varroidae , Animais , Abelhas , Infestações por Ácaros/veterinária , Carga Viral
6.
Insects ; 12(9)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34564240

RESUMO

Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive, tenacious inside a bee colony. From all the research done on the topic, we have learned that a better understanding of this organism in its relationship with the bee but also for itself is necessary. Its biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments have been developed over the years based on hard or soft acaricides or even on biocontrol techniques. To date, no real sustainable solution exists to reduce the pressure of the mite without creating resistances or harming honeybees. Consequently, the development of alternative disruptive tools against the parasitic life cycle remains open. It requires the combination of both laboratory and field results through a holistic approach based on health biomarkers. Here, we advocate for a more integrative vision of V. destructor research, where in vitro and field studies are more systematically compared and compiled. Therefore, after a brief state-of-the-art about the mite's life cycle, we discuss what has been done and what can be done from the laboratory to the field against V. destructor through an integrative approach.

7.
Insects ; 13(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35055880

RESUMO

Varroa destructor (Anderson and Trueman) is known as a major pest of Apis mellifera L, especially in the Northern Hemisphere where its effects can be deleterious. As an obligate parasite, this mite relies entirely on its host to reproduce and complete its cycle. Studies focusing on isolated organs are needed to better comprehend this organism. To conduct such targeted molecular or physiological studies, the dissection of V. destructor mites is crucial as it allows the extraction of specific organs. Here, we propose a technical article showing detailed steps of females V. destructor dissection, illustrated with pictures and videos. These illustrated guidelines will represent a helpful tool to go further in V. destructor research.

8.
PLoS One ; 11(4): e0153482, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096154

RESUMO

Varroa destructor is a parasitic mite of the honeybee that causes thousands of colony losses worldwide. The parasite cycle is composed of a phoretic and a reproductive phase. During the former, mites stay on adult bees, mostly on nurses, to feed on hemolymph. During the latter, the parasites enter brood cells and reproduce. We investigated if the type of bees on which Varroa stays during the phoretic phase and if the duration of this stay influenced the reproductive success of the parasite and the damage caused to bees. For that purpose, we used an in vitro rearing method developed in our laboratory to assess egg laying rate and the presence and number of fully molted daughters. The expression level of two Varroa vitellogenin genes (VdVg1 and VdVg2), known to vary throughout reproduction, was also quantified. Results showed that the status of the bees or time spent during the phoretic phase impacts neither reproduction parameters nor the Varroa vitellogenin genes levels of expression. However, we correlated these parameters to the gene expression and demonstrated that daughters expressed the vitellogenin genes at lower levels than their mother. Regarding the damage to bees, the data indicated that a longer stay on adult bees during the phoretic phase resulted in more frequent physical deformity in newborn bees. We showed that those mites carry more viral loads of the Deformed Wing Virus and hence trigger more frequently overt infections. This study provides new perspectives towards a better understanding of the Varroa-honeybee interactions.


Assuntos
Abelhas/fisiologia , Abelhas/parasitologia , Interações Hospedeiro-Parasita , Varroidae/fisiologia , Animais , Abelhas/genética , Abelhas/virologia , Feminino , Regulação da Expressão Gênica , Larva/crescimento & desenvolvimento , Masculino , Picornaviridae/fisiologia , Reprodução , Análise de Sobrevida , Varroidae/virologia , Vitelogeninas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA