Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576076

RESUMO

Mesenteric ischemia and reperfusion (I/R) injury can ensue from a variety of vascular diseases and represents a major cause of morbidity and mortality in intensive care units. It causes an inflammatory response associated with local gut dysfunction and remote organ injury. Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator of metabolic homeostasis. The catalytic α1 subunit is highly expressed in the intestine and vascular system. In loss-of-function studies, we investigated the biological role of AMPKα1 in affecting the gastrointestinal barrier function. Male knock-out (KO) mice with a systemic deficiency of AMPKα1 and wild-type (WT) mice were subjected to a 30 min occlusion of the superior mesenteric artery. Four hours after reperfusion, AMPKα1 KO mice exhibited exaggerated histological gut injury and impairment of intestinal permeability associated with marked tissue lipid peroxidation and a lower apical expression of the junction proteins occludin and E-cadherin when compared to WT mice. Lung injury with neutrophil sequestration was higher in AMPKα1 KO mice than WT mice and paralleled with higher plasma levels of syndecan-1, a biomarker of endothelial injury. Thus, the data demonstrate that AMPKα1 is an important requisite for epithelial and endothelial integrity and has a protective role in remote organ injury after acute ischemic events.


Assuntos
Proteínas Quinases Ativadas por AMP/deficiência , Lesão Pulmonar Aguda/complicações , Intestinos/enzimologia , Intestinos/lesões , Isquemia Mesentérica/complicações , Traumatismo por Reperfusão/complicações , Proteínas Quinases Ativadas por AMP/genética , Lesão Pulmonar Aguda/enzimologia , Animais , Caderinas/metabolismo , Permeabilidade da Membrana Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Epiteliais/metabolismo , Glicocálix/metabolismo , Intestinos/patologia , Isquemia Mesentérica/enzimologia , Camundongos Endogâmicos C57BL , Ocludina/metabolismo , Traumatismo por Reperfusão/enzimologia
2.
FASEB J ; 32(2): 728-741, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28974562

RESUMO

Age is an independent risk factor of multiple organ failure in patients with sepsis. However, the age-related mechanisms of injury are not known. AMPK is a crucial regulator of energy homeostasis, which controls mitochondrial biogenesis by activation of peroxisome proliferator-activated receptor-γ coactivator-α (PGC-1α) and disposal of defective organelles by autophagy. We investigated whether AMPK dysregulation might contribute to age-dependent liver injury in young (2-3 mo) and mature male mice (11-13 mo) subjected to sepsis. Liver damage was higher in mature mice than in young mice and was associated with impairment of hepatocyte mitochondrial function, structure, and biogenesis and reduced autophagy. At molecular analysis, there was a time-dependent nuclear translocation of the active phosphorylated catalytic subunits AMPKα1/α2 and PGC-1α in young, but not in mature, mice after sepsis. Treatment with the AMPK activator 5-amino-4-imidazolecarboxamide riboside-1-ß-d-ribofuranoside (AICAR) improved liver mitochondrial structure in both age groups compared with vehicle. In loss-of-function studies, young knockout mice with systemic deficiency of AMPKα1 exhibited greater liver injury than did wild-type mice after sepsis. Our study suggests that AMPK is important for liver metabolic recovery during sepsis. Although its function may diminish with age, pharmacological activation of AMPK may be of therapeutic benefit.-Inata, Y., Kikuchi, S., Samraj, R. S., Hake, P. W., O'Connor, M., Ledford, J. R., O'Connor, J., Lahni, P., Wolfe, V., Piraino, G., Zingarelli, B. Autophagy and mitochondrial biogenesis impairment contribute to age-dependent liver injury in experimental sepsis: dysregulation of AMP-activated protein kinase pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Autofagia , Núcleo Celular/enzimologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Sepse/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Envelhecimento/genética , Envelhecimento/patologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Núcleo Celular/genética , Fígado/lesões , Fígado/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Ribonucleotídeos/farmacologia , Sepse/genética , Sepse/patologia
3.
Am J Physiol Heart Circ Physiol ; 315(4): H826-H837, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979626

RESUMO

Age represents a major risk factor for multiple organ failure, including cardiac dysfunction, in patients with sepsis. AMP-activated protein kinase (AMPK) is a crucial regulator of energy homeostasis that controls mitochondrial biogenesis by activation of peroxisome proliferator-activated receptor-γ coactivator-1α and disposal of defective organelles by autophagy. We investigated whether AMPK dysregulation contributes to age-dependent cardiac injury in young (2-3 mo) and mature adult (11-13 mo) male mice subjected to sepsis by cecal ligation and puncture and whether AMPK activation by 5-amino-4-imidazole carboxamide riboside affords cardioprotective effects. Plasma proinflammatory cytokines and myokine follistatin were similarly elevated in vehicle-treated young and mature adult mice at 18 h after sepsis. However, despite equivalent troponin I and T levels compared with similarly treated young mice, vehicle-treated mature adult mice exhibited more severe cardiac damage by light and electron microscopy analyses with more marked intercellular edema, inflammatory cell infiltration, and mitochondrial derangement. Echocardiography revealed that vehicle-treated young mice exhibited left ventricular dysfunction after sepsis, whereas mature adult mice exhibited a reduction in stroke volume without apparent changes in load-dependent indexes of cardiac function. At molecular analysis, phosphorylation of the catalytic subunits AMPK-α1/α2 was associated with nuclear translocation of peroxisome proliferator-activated receptor-γ coactivator-1α in vehicle-treated young but not mature adult mice. Treatment with 5-amino-4-imidazole carboxamide riboside ameliorated cardiac architecture derangement in mice of both ages. These cardioprotective effects were associated with attenuation of the systemic inflammatory response and amelioration of cardiac dysfunction in young mice only, not in mature adult animals. NEW & NOTEWORTHY Our data suggest that sepsis-induced cardiac dysfunction manifests with age-dependent characteristics, which are associated with a distinct regulation of AMP-activated protein kinase-dependent metabolic pathways. Consistent with this age-related deterioration, pharmacological activation of AMP-activated protein kinase may afford cardioprotective effects allowing a partial recovery of cardiac function in young but not mature age.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ativadores de Enzimas/farmacologia , Miocárdio/enzimologia , Ribonucleotídeos/farmacologia , Sepse/tratamento farmacológico , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Fatores Etários , Aminoimidazol Carboxamida/farmacologia , Animais , Citocinas/sangue , Modelos Animais de Doenças , Ativação Enzimática , Folistatina/sangue , Mediadores da Inflamação/sangue , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/ultraestrutura , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Sepse/enzimologia , Sepse/microbiologia , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Troponina/sangue , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/microbiologia , Disfunção Ventricular Esquerda/fisiopatologia
4.
Am J Respir Cell Mol Biol ; 56(5): 585-596, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28085510

RESUMO

The development of multiple organ failure in patients with hemorrhagic shock is significantly influenced by patient age. Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator of energy homeostasis, which coordinates metabolic repair during cellular stress. We investigated whether AMPK-regulated signaling pathways are age-dependent in hemorrhage-induced lung injury and whether AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) affords lung protective effects. Male C57/BL6 young mice (3-5 mo), mature adult mice (9-12 mo), and young AMPKα1 knockout mice (3-5 mo) were subjected to hemorrhagic shock by blood withdrawing, followed by resuscitation with shed blood and lactated Ringer's solution. Plasma proinflammatory cytokines were similarly elevated in C57/BL6 young and mature adult mice after hemorrhagic shock. However, mature adult mice exhibited more severe lung edema and neutrophil infiltration, and higher mitochondrial damage in alveolar epithelial type II cells, than did young mice. No change in autophagy was observed. At molecular analysis, the phosphorylation of the catalytic subunit AMPKα1 was associated with nuclear translocation of peroxisome proliferator-activated receptor γ co-activator-α in young, but not mature, adult mice. Treatment with AICAR ameliorated the disruption of lung architecture in mice of both ages; however, effects in mature adult mice were different than young mice and also involved inhibition of nuclear factor-κB. In young AMPKα1 knockout mice, AICAR failed to improve hypotension and lung neutrophil infiltration. Our data demonstrate that during hemorrhagic shock, AMPK-dependent metabolic repair mechanisms are important for mitigating lung injury. However, these mechanisms are less competent with age.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Redes e Vias Metabólicas , Choque Hemorrágico/enzimologia , Choque Hemorrágico/patologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/ultraestrutura , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Autofagia/efeitos dos fármacos , Western Blotting , Líquido da Lavagem Broncoalveolar , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Hipotensão/sangue , Hipotensão/complicações , Hipotensão/enzimologia , Hipotensão/patologia , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Edema Pulmonar/complicações , Edema Pulmonar/enzimologia , Edema Pulmonar/patologia , Ribonucleotídeos/farmacologia , Choque Hemorrágico/sangue , Choque Hemorrágico/complicações , Sirtuína 1/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(10 Pt B): 2680-2691, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28579457

RESUMO

Severity of multiple organ failure is significantly impacted by age and gender in patients with hemorrhagic shock. However, the molecular mechanisms underlying the enhanced organ injury are not fully understood. AMP-activated protein kinase (AMPK) is a pivotal orchestrator of metabolic responses during stress. We investigated whether hemorrhage-induced myocardial injury is age and gender dependent and whether treatment with metformin, an AMPK activator, affords cardioprotective effects. C57/BL6 young (3-5months) and mature (9-12months) male and female mice were subjected to hemorrhagic shock by blood withdrawing followed by resuscitation with blood and Lactated Ringer's solution. Vehicle-treated young and mature mice of both genders had a similar elevation of plasma inflammatory cytokines at 3h after resuscitation. However, vehicle-treated male mature mice experienced hemodynamic instability and higher myocardial damage than young male mice, as evaluated by echocardiography, histology and cardiovascular injury biomarkers. There was also a gender-dependent difference in cardiovascular injury in the mature group as vehicle-treated male mice exhibited more severe organ injury than female mice. At molecular analysis, vehicle-treated mature mice of both genders exhibited a marked downregulation of AMPKα activation and nuclear translocation of peroxisome proliferator-activated receptor γ co-activator α when compared with young mice. Treatment with metformin improved cardiovascular function and survival in mature animals of both genders. However, specific cardioprotective effects of metformin were gender-dependent. Metformin did not affect hemodynamic or inflammatory responses in young animals. Thus, our data suggest that targeting metabolic recovery with metformin may be a potential treatment approach in severe hemorrhage in adult population.


Assuntos
Envelhecimento/metabolismo , Cardiotônicos/farmacologia , Ativadores de Enzimas/farmacologia , Traumatismos Cardíacos/tratamento farmacológico , Hemodinâmica/efeitos dos fármacos , Metformina/farmacologia , Miocárdio/metabolismo , Caracteres Sexuais , Choque Hemorrágico/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/patologia , Animais , Biomarcadores/metabolismo , Feminino , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Masculino , Camundongos , Miocárdio/patologia , PPAR gama/metabolismo , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia
6.
FASEB J ; 30(10): 3453-3460, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27435263

RESUMO

Acute mesenteric ischemia is associated with high morbidity and mortality. In recent studies, we found that the intestine is an important source of matrix metalloproteinase (MMP)8 during intestinal injury. We hypothesized that genetic ablation or pharmacological inhibition of MMP8 would reduce intestinal injury in mice subjected to intestinal ischemia-reperfusion (I/R) injury. Male mice aged 8-12 wk were subjected to intestinal I/R injury by transient occlusion of the superior mesenteric artery for 30 min. MMP8 was inhibited by genetic and pharmacological approaches. In vivo study endpoints included several functional, histological, and biochemical assays. Intestinal sections were assessed for barrier function and expression of tight junction proteins. I/R injury led to increased intestinal and systemic expression of MMP8. This increase was associated with increased intestinal neutrophil infiltration, epithelial injury, and permeability. I/R injury was associated with increased systemic inflammation and weight loss. These parameters were ameliorated by inhibiting MMP8. I/R injury caused a loss of the tight junction protein claudin-3, which was ameliorated by genetic ablation of MMP8. MMP8 plays an important role in intestinal I/R injury through mechanisms involving increased inflammation and loss of claudin-3. Inhibition of MMP8 is a potential therapeutic strategy in this setting.-Daly, M. C., Atkinson, S. J., Varisco, B. M., Klingbeil L., Hake, P., Lahni, P., Piraino, G., Wu, D., Hogan, S. P., Zingarelli, B., Wong, H. R. Role of matrix metalloproteinase-8 as a mediator of injury in intestinal ischemia and reperfusion.


Assuntos
Permeabilidade Capilar/fisiologia , Intestinos/enzimologia , Metaloproteinase 8 da Matriz/metabolismo , Infiltração de Neutrófilos/fisiologia , Traumatismo por Reperfusão/enzimologia , Animais , Claudina-3/metabolismo , Inflamação/metabolismo , Pulmão/enzimologia , Masculino , Camundongos , Proteínas de Junções Íntimas/metabolismo
7.
Mol Med ; 22: 455-463, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27506554

RESUMO

Genetic ablation or pharmacologic inhibition of matrix metalloproteinase-8 (MMP8) improves survival in an adult murine sepsis model. Because developmental age influences the host inflammatory response, we hypothesized that developmental age influences the role of MMP8 in sepsis. First, we compared sepsis survival between wild type (WT, C57BL/6) and MMP8 null juvenile-aged mice (12-14 days) after intraperitoneal injection of a standardized cecal slurry. Second, peritoneal lavages collected at 6 and 18 hours after cecal slurry injection were analyzed for bacterial burden, leukocyte subsets, and inflammatory cytokines. Third, juvenile WT mice were pretreated with an MMP8 inhibitor prior to cecal slurry injection; analysis of their bacterial burden was compared to vehicle-injected animals. Fourth, the phagocytic capacity of WT and MMP8 null peritoneal macrophages was compared. Finally, peritoneal neutrophil extracellular traps (NETs) were compared using immunofluorescent imaging and quantitative image analysis. We found that juvenile MMP8 null mice had greater mortality and higher bacterial burden than WT mice. Leukocyte counts and cytokine concentrations in the peritoneal fluid were increased in the MMP8 null mice, relative to the wild type mice. Peritoneal macrophages from MMP8 null mice had reduced phagocytic capacity compared to WT macrophages. There was no quantitative difference in NET formation, but fewer bacteria were adherent to NETs from MMP8 null animals. In conclusion, in contrast to septic adult mice, genetic ablation of MMP8 increased mortality following bacterial peritonitis in juvenile mice. The increase in mortality in MMP8 null juvenile mice was associated with reduced bacterial clearance and reduced NET efficiency. We conclude that developmental age influences the role of MMP8 in sepsis.

9.
Shock ; 61(1): 83-88, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917869

RESUMO

ABSTRACT: Background: Multiple-organ dysfunction syndrome disproportionately contributes to pediatric sepsis morbidity. Humanin (HN) is a small peptide encoded by mitochondrial DNA and thought to exert cytoprotective effects in endothelial cells and platelets. We sought to test the association between serum HN (sHN) concentrations and multiple-organ dysfunction syndrome in a prospectively enrolled cohort of pediatric septic shock. Methods: Human MT-RNR2 ELISA was used to determine sHN concentrations on days 1 and 3. The primary outcome was thrombocytopenia-associated multiorgan failure (TAMOF). Secondary outcomes included individual organ dysfunctions on day 7. Associations across pediatric sepsis biomarker (PERSEVERE)-based mortality risk strata and correlation with platelet and markers of endothelial activation were tested. Results: One hundred forty subjects were included in this cohort, of whom 39 had TAMOF. The concentration of sHN was higher on day 1 relative to day 3 and among those with TAMOF phenotype in comparison to those without. However, the association between sHN and TAMOF phenotype was not significant after adjusting for age and illness severity in multivariate models. In secondary analyses, sHN was associated with presence of day 7 sepsis-associated acute kidney injury ( P = 0.049). Furthermore, sHN was higher among those with high PERSEVERE-mortality risk strata and correlated with platelet counts and several markers of endothelial activation. Conclusion: Future investigation is necessary to validate the association between sHN and sepsis-associated acute kidney injury among children with septic shock. Furthermore, mechanistic studies that elucidate the role of HN may lead to therapies that promote organ recovery through restoration of mitochondrial homeostasis among those critically ill.


Assuntos
Injúria Renal Aguda , Peptídeos e Proteínas de Sinalização Intracelular , Sepse , Choque Séptico , Trombocitopenia , Humanos , Criança , Insuficiência de Múltiplos Órgãos , Células Endoteliais , Biomarcadores , Injúria Renal Aguda/complicações
10.
Shock ; 59(5): 779-790, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840516

RESUMO

ABSTRACT: Introduction: Sepsis is a dysregulated host response to infection that can lead to life-threatening organ dysfunction. Clinical and animal studies consistently demonstrate that female subjects are less susceptible to the adverse effects of sepsis, demonstrating the importance of understanding how sex influences sepsis outcomes. The signal transducer and activator of transcription 3 (STAT3) pathway are a major signaling pathway that facilitates inflammation during sepsis. STAT3 is abundantly expressed in white adipose tissue; however, little is known about the contribution of white adipose tissue STAT3 activation during sepsis. We hypothesize that adipocyte STAT3 inhibition during severe sepsis will exaggerate the inflammatory response and impact organ injury, in a sex-dependent manner. Methods: We generated STAT3 flox/flox (wild-type [WT]) and adipocyte STAT3 knock out (A-STAT3 KO) mice using Cre-lox technology. Studies were done in 12- to 16-week-old male and female mice. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Control nonseptic mice did not undergo CLP (0 h CLP). Tissues were harvested 18 h after CLP. Body composition was determined by echo magnetic resonance imaging. Energy metabolism was determined by indirect calorimetry. White adipose tissue morphology was determined by hematoxylin and eosin staining, while STAT3 activation in the white adipose tissue was determined by western blot analysis and immunohistochemistry staining of STAT3 activation/phosphorylation at tyrosine 705. Plasma cytokines (TNF-α, IL-6, and leptin) were determined by luminex assay. Neutrophil infiltration of the lung and liver was assessed by myeloperoxidase activity assay. Histological signs of organ injury on lung and liver tissue were assessed by hematoxylin and eosin staining. Liver injury was further assessed by measuring plasma alanine and aspartate aminotransferase. In a separate cohort of mice, sepsis was induced by CLP and mice were monitored every 6-12 h over a 7-day period to assess survival rate. Results: We demonstrate that neither body composition nor energy metabolism is altered with adipocyte STAT3 inhibition in male or female mice, under nonseptic conditions. Sepsis was associated with reduced adipocyte size in female WT and A-STAT3 KO mice, suggesting that this event is STAT3 independent. Sepsis did not alter adipocyte size in male WT and A-STAT3 KO mice, suggesting that this event is also sex dependent. Although STAT3 phosphorylation at tyrosine 705 expression is negligible in male and female A-STAT3 KO mice, septic female WT and A-STAT3 KO mice have higher white adipose tissue STAT3 activation than male WT and A-STAT3 KO mice. Adipocyte STAT3 inhibition did not alter the proinflammatory cytokine response during sepsis in male or female mice, as measured by plasma TNF-α, IL-6, and leptin levels. Adipocyte STAT3 inhibition reduced lung neutrophil infiltration and histological signs of lung injury during sepsis in male mice. On the contrary, adipocyte STAT3 inhibition had no effect on lung neutrophil infiltration or lung injury in female mice. We further demonstrate that neither liver neutrophil infiltration nor histological signs of liver injury are altered by adipocyte STAT3 inhibition during sepsis, in male or female mice. Lastly, adipocyte STAT3 inhibition did not affect survival rate of male or female mice during sepsis. Conclusions: Our study demonstrates that sex influences white adipose tissue STAT3 activation and morphology during sepsis, which is not dependent on the presence of functional STAT3 in mature adipocytes. Furthermore, genetic inhibition of adipocyte STAT3 activation in male, but not female mice, results in reduced lung neutrophil infiltration and lung injury during sepsis. The results from our study demonstrate the importance of considering biological sex and the white adipose tissue as potential sources and targets of inflammation during sepsis.


Assuntos
Lesão Pulmonar , Sepse , Masculino , Camundongos , Animais , Leptina , Lesão Pulmonar/complicações , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator de Transcrição STAT3/genética , Amarelo de Eosina-(YS) , Hematoxilina , Sepse/patologia , Citocinas , Inflamação , Adipócitos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
11.
Shock ; 60(1): 64-74, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079467

RESUMO

ABSTRACT: Introduction: Despite therapeutic advances in hemorrhagic shock, mortality from multiple organ failure remains high. We previously showed that the α1 subunit of AMP-activated protein kinase (AMPK), a crucial regulator of mitochondrial function, exerts a protective role in hemorrhagic shock. Humanin is a mitochondrial peptide with cytoprotective properties against cellular stress. Here, we investigated whether AMPKα1 influences systemic levels of endogenous humanin in hemorrhagic shock and whether treatment with the synthetic analog humanin-G affords beneficial effects. Methods: AMPKα1 wild-type (WT) and knockout (KO) female mice were subjected to hemorrhagic shock followed by resuscitation with blood and lactated Ringer's solution. In short-term studies, mice were treated with humanin-G or vehicle and sacrificed at 3 h after resuscitation; in survival studies, mice were treated with PEGylated humanin-G and monitored for 7 days. Results: Compared with the vehicle WT group, KO mice exhibited severe hypotension, cardiac mitochondrial damage, and higher plasma levels of Th17 cytokines but had similar lung injury and similar plasma elevation of endogenous humanin. Treatment with humanin-G improved lung injury, mean arterial blood pressure, and survival in both WT and KO mice, without affecting systemic cytokine or humanin levels. Humanin-G also ameliorated cardiac mitochondrial damage and increased adenosine triphosphate levels in KO mice. Beneficial effects of humanin-G were associated with lung cytoplasmic and nuclear activation of the signal transducer and activator of transcription-3 (STAT3) in AMPKα1-independent manner with marginal or no effects on mitochondrial STAT3 and complex I subunit GRIM-19. Conclusions: Our data indicate that circulating levels of humanin increase during hemorrhagic shock in AMPKα1-independent fashion as a defense mechanism to counteract metabolic derangement and that administration of humanin-G affords beneficial effects through STAT3 activation even in the absence of a functional AMPKα1.


Assuntos
Lesão Pulmonar , Choque Hemorrágico , Feminino , Humanos , Choque Hemorrágico/metabolismo , Lesão Pulmonar/complicações , Proteínas Quinases Ativadas por AMP/metabolismo , Pulmão/metabolismo , Citocinas , Ressuscitação
12.
Physiol Rep ; 10(18): e15453, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36117416

RESUMO

Acute kidney injury (AKI) is associated with morbidity and mortality. Urinary biomarkers may disentangle its clinical heterogeneity. Olfactomedin 4 (OLFM4) is a secreted glycoprotein expressed in stressed neutrophils and epithelial cells. In septic mice, OLFM4 expression localized to the kidney's loop of Henle (LOH) and was detectable in the urine. We hypothesized that urine OLFM4 (uOLFM4) will be increased in patients with AKI and sepsis. Urine from critically ill pediatric patients was obtained from a prospective study based on AKI and sepsis status. uOLFM4 was quantified with a Luminex immunoassay. AKI was defined by KDIGO severe criteria. Sepsis status was extracted from the medical record based on admission diagnosis. Immunofluorescence on pediatric kidney biopsies was performed with NKCC2, uromodulin and OLFM4 specific antibodies. Eight patients had no sepsis, no AKI; 7 had no sepsis but did have AKI; 10 had sepsis, no AKI; 11 had sepsis and AKI. Patients with AKI had increased uOLFM4 compared to no/stage 1 AKI (p = 0.044). Those with sepsis had increased uOLFM4 compared to no sepsis (p = 0.026). uOLFM4 and NGAL were correlated (r2 0.59, 95% CI 0.304-0.773, p = 0.002), but some patients had high uOLFM4 and low NGAL, and vice versa. Immunofluorescence on kidney biopsies demonstrated OLFM4 colocalization with NKCC2 and uromodulin, suggesting expression in the thick ascending LOH (TALH). We conclude that AKI and sepsis are associated with increased uOLFM4. uOLFM4 and NGAL correlated in many patients, but was poor in others, suggesting these markers may differentiate AKI subgroups. Given OLFM4 colocalization to human TALH, we propose OLFM4 may be a LOH-specific AKI biomarker.


Assuntos
Injúria Renal Aguda , Sepse , Injúria Renal Aguda/complicações , Injúria Renal Aguda/diagnóstico , Animais , Biomarcadores , Criança , Proteínas da Matriz Extracelular , Glicoproteínas , Humanos , Lipocalina-2 , Alça do Néfron , Camundongos , Estudos Prospectivos , Sepse/complicações , Sepse/diagnóstico , Uromodulina
13.
Front Immunol ; 13: 984298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119052

RESUMO

Endothelial dysfunction plays a central role in the pathogenesis of sepsis-mediated multiple organ failure. Several clinical and experimental studies have suggested that the glycocalyx is an early target of endothelial injury during an infection. Colivelin, a synthetic derivative of the mitochondrial peptide humanin, has displayed cytoprotective effects in oxidative conditions. In the current study, we aimed to determine the potential therapeutic effects of colivelin in endothelial dysfunction and outcomes of sepsis in vivo. Male C57BL/6 mice were subjected to a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP) and were treated with vehicle or colivelin (100-200 µg/kg) intraperitoneally at 1 h after CLP. We observed that vehicle-treated mice had early elevation of plasma levels of the adhesion molecules ICAM-1 and P-selectin, the angiogenetic factor endoglin and the glycocalyx syndecan-1 at 6 h after CLP when compared to control mice, while levels of angiopoietin-2, a mediator of microvascular disintegration, and the proprotein convertase subtilisin/kexin type 9, an enzyme implicated in clearance of endotoxins, raised at 18 h after CLP. The early elevation of these endothelial and glycocalyx damage biomarkers coincided with lung histological injury and neutrophil inflammation in lung, liver, and kidneys. At transmission electron microscopy analysis, thoracic aortas of septic mice showed increased glycocalyx breakdown and shedding, and damaged mitochondria in endothelial and smooth muscle cells. Treatment with colivelin ameliorated lung architecture, reduced organ neutrophil infiltration, and attenuated plasma levels of syndecan-1, tumor necrosis factor-α, macrophage inflammatory protein-1α and interleukin-10. These therapeutic effects of colivelin were associated with amelioration of glycocalyx density and mitochondrial structure in the aorta. At molecular analysis, colivelin treatment was associated with inhibition of the signal transducer and activator of transcription 3 and activation of the AMP-activated protein kinase in the aorta and lung. In long-term outcomes studies up to 7 days, co-treatment of colivelin with antimicrobial agents significantly reduced the disease severity score when compared to treatment with antibiotics alone. In conclusion, our data support that damage of the glycocalyx is an early pathogenetic event during sepsis and that colivelin may have therapeutic potential for the treatment of sepsis-associated endothelial dysfunction.


Assuntos
Glicocálix , Sepse , Proteínas Quinases Ativadas por AMP/metabolismo , Angiopoietina-2/metabolismo , Angiopoietina-2/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Endoglina/metabolismo , Endotélio Vascular/metabolismo , Endotoxinas/metabolismo , Glicocálix/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-10/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Inflamatórias de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Selectina-P/metabolismo , Pró-Proteína Convertases/metabolismo , Fator de Transcrição STAT3/metabolismo , Sepse/metabolismo , Subtilisinas/metabolismo , Subtilisinas/uso terapêutico , Sindecana-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 300(5): L730-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398498

RESUMO

C-peptide is a 31-amino acid peptide cleaved from proinsulin during insulin synthesis. Initially thought to be inert, C-peptide may modulate the inflammatory response in the setting of endotoxemia and ischemia reperfusion. However, the spectrum of its biological effects is unclear. We hypothesized that exogenous administration of C-peptide would modulate pro- and anti-inflammatory signaling pathways and thereby attenuate lung inflammation in an in vivo model of hemorrhagic shock. Hemorrhagic shock was induced in male Wistar rats (aged 3-4 mo) by withdrawing blood to a mean arterial pressure of 50 mmHg. At 3 h after hemorrhage, rats were rapidly resuscitated by returning their shed blood. At the time of resuscitation and every hour thereafter, animals received C-peptide (280 nmol/kg) or vehicle parenterally. Animals were euthanized at 1 and 3 h after resuscitation. C-peptide administration at resuscitation following hemorrhagic shock ameliorated hypotension and blunted the systemic inflammatory response by reducing plasma levels of IL-1, IL-6, macrophage inflammatory protein-1α, and cytokine-induced neutrophil chemoattractant-1. This was associated with a reduction in lung neutrophil infiltration and plasma levels of receptor for advanced glycation end products. Mechanistically, C-peptide treatment was associated with reduced expression of proinflammatory transcription factors activator protein-1 and NF-κB and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor-γ. Our data suggest that C-peptide ameliorates the inflammatory response and lung inflammation following hemorrhagic shock. These effects may be modulated by altering the balance between pro- and anti-inflammatory signaling in the lung.


Assuntos
Peptídeo C/farmacologia , Pneumonia/prevenção & controle , Choque Hemorrágico/complicações , Animais , Citocinas/sangue , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , PPAR gama/metabolismo , Pneumonia/patologia , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/sangue , Ressuscitação , Choque Hemorrágico/tratamento farmacológico , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/sangue
15.
Am J Pathol ; 177(4): 1834-47, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709805

RESUMO

The nuclear peroxisome proliferator-activated receptor δ (PPARδ) is an important regulator of lipid metabolism. In contrast to its known effects on energy homeostasis, its biological role on inflammation is not well understood. We investigated the role of PPARδ in the modulation of the nuclear factor-κB (NF-κB)-driven inflammatory response to polymicrobial sepsis in vivo and in macrophages in vitro. We demonstrated that administration of GW0742, a specific PPARδ ligand, provided beneficial effects to rats subjected to cecal ligation and puncture, as shown by reduced systemic release of pro-inflammatory cytokines and neutrophil infiltration in lung, liver, and cecum, when compared with vehicle treatment. Molecular analysis revealed that treatment with GW0742 reduced NF-κB binding to DNA in lung and liver. In parallel experiments, heterozygous PPARδ-deficient mice suffered exaggerated lethality when subjected to cecal ligation and puncture and exhibited severe lung injury and higher levels of circulating tumor necrosis factor-α (TNFα) and keratinocyte-derived chemokine than wild-type mice. Furthermore, in lipopolysaccharide-stimulated J774.A1 macrophages, GW0742 reduced TNFα production by inhibiting NF-κB activation. RNA silencing of PPARδ abrogated the inhibitory effects of GW0742 on TNFα production. Chromatin immunoprecipitation assays revealed that PPARδ displaced the NF-κB p65 subunit from the κB elements of the TNFα promoter, while recruiting the co-repressor BCL6. These data suggest that PPARδ is a crucial anti-inflammatory regulator, providing a basis for novel sepsis therapies.


Assuntos
Bacteriemia/prevenção & controle , Inflamação/prevenção & controle , NF-kappa B/metabolismo , PPAR delta/fisiologia , Sepse/metabolismo , Sepse/microbiologia , Animais , Bacteriemia/etiologia , Bacteriemia/metabolismo , Western Blotting , Ceco/imunologia , Ceco/metabolismo , Ceco/microbiologia , Núcleo Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Hipotensão , Técnicas Imunoenzimáticas , Inflamação/etiologia , Inflamação/metabolismo , Luciferases/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Sepse/imunologia , Transdução de Sinais , Taxa de Sobrevida , Tiazóis/farmacologia
16.
Am J Physiol Gastrointest Liver Physiol ; 298(1): G133-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19926821

RESUMO

A clinical observation in pediatric and adult intensive care units is that the incidence of multiple organ failure in pediatric trauma victims is lower than in adult patients. However, the molecular mechanisms are not yet defined. Recent experimental studies have shown that the nuclear peroxisome proliferator-activated receptor-gamma (PPARgamma) modulates the inflammatory process. In this study, we hypothesized that severity of liver injury may be age dependent and PPARgamma activation may provide beneficial effects. Hemorrhagic shock was induced in anesthetized young (3-5 mo old) and mature male Wistar rats (11-13 mo old) by withdrawing blood to a mean arterial blood pressure of 50 mmHg. After 3 h, rats were rapidly resuscitated with shed blood. Animals were euthanized 3 h after resuscitation. In mature rats, liver injury appeared more pronounced compared with young rats and was characterized by marked hepatocyte apoptosis, extravasation of erythrocytes, and accumulation of neutrophils. The ratio between the antiapoptotic protein Bcl-2 and the proapoptotic protein BAX was lower, whereas activity of caspase-3, the executioner of apoptosis, was higher in liver of mature rats compared with young rats. Plasma alanine aminotransferase levels were not different between the two age groups. This heightened liver apoptosis was associated with a significant downregulation of PPARgamma DNA binding in mature rats compared with young rats. Treatment with the PPARgamma ligand ciglitazone significantly reduced liver apoptosis in mature rats. Our data suggest that liver injury after severe hemorrhage is age dependent and PPARgamma activation is a novel hepatoprotective mechanism.


Assuntos
Apoptose/fisiologia , Hepatopatias/metabolismo , Hepatopatias/patologia , PPAR gama/metabolismo , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Fatores Etários , Alanina Transaminase/sangue , Animais , Pressão Sanguínea , Caspase 3/metabolismo , Regulação para Baixo/fisiologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Hipoglicemiantes/farmacologia , Hepatopatias/tratamento farmacológico , Masculino , Neutrófilos/patologia , PPAR gama/genética , Peroxidase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Ressuscitação , Índice de Gravidade de Doença , Tiazolidinedionas/farmacologia , Proteína X Associada a bcl-2/metabolismo
17.
Mol Med ; 16(11-12): 491-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20809049

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-γ is a ligand-activated transcription factor and regulates inflammation. Posttranslational modifications regulate the function of PPARγ, potentially affecting inflammation. PPARγ contains a mitogen-activated protein kinase (MAPK) site, and phosphorylation by extracellular signal-regulated kinase (ERK)-1/2 leads to inhibition of PPARγ. This study investigated the kinetics of PPARγ expression and activation in parenchymal and immune cells in sepsis using the MAPK/ERK kinase (MEK)-1 inhibitor, an upstream kinase of ERK1/2. Adult male Sprague Dawley rats were subjected to polymicrobial sepsis by cecal ligation and puncture. Rats received intraperitoneal injection of vehicle or the MEK1 inhibitor PD98059 (5 mg/kg) 30 min before cecal ligation and puncture. Rats were euthanized at 0, 1, 3, 6 and 18 h after cecal ligation and puncture. Control animals used were animals at time 0 h. Lung, plasma and peripheral blood mononuclear cells (PBMCs) were collected for biochemical assays. In vehicle-treated rats, polymicrobial sepsis resulted in significant lung injury. In the lung and PBMCs, nuclear levels of PPARγ were decreased and associated with an increase in phosphorylated PPARγ and phosphorylated ERK1/2 levels. Treatment with the MEK1 inhibitor increased the antiinflammatory plasma adipokine adiponectin, restored PPARγ expression in PBMCs and lung, and decreased lung injury. The inflammatory effects of sepsis cause changes in PPARγ expression and activation, in part, because of phosphorylation of PPARγ by ERK1/2. This phosphorylation can be reversed by ERK1/2 inhibition, thereby improving lung injury.


Assuntos
Regulação para Baixo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PPAR gama/metabolismo , Sepse/microbiologia , Adiponectina/sangue , Animais , Anti-Inflamatórios/farmacocinética , Ligantes , Pulmão/fisiopatologia , Masculino , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Sepse/metabolismo , Fatores de Transcrição/metabolismo
18.
Front Immunol ; 11: 210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117320

RESUMO

Alterations in the energy homeostasis contribute to sepsis-mediated multiple organ failure. The liver plays a central role in metabolism and participates to the innate immune and inflammatory responses of sepsis. Several clinical and experimental studies have suggested that females are less susceptible to the adverse outcome of sepsis. However, underlying mechanisms of organ damage in sepsis remain largely undefined. AMP-activated protein kinase (AMPK) is an important regulator of mitochondrial quality control. The AMPK catalytic α1 isoform is abundantly expressed in the liver. Here, we determined the role of hepatocyte AMPKα1 in sepsis by using hepatocyte-specific AMPKα1 knockout mice (H-AMPKα1 KO) generated with Cre-recombinase expression under the control of the albumin promoter. Using a clinically relevant model of polymicrobial sepsis by cecal ligation and puncture (CLP), we observed that male H-AMPKα1 KO mice had higher plasma levels of tumor necrosis factor-α and interleukin-6 and exhibited a more severe liver and lung injury than male H-AMPKα1 WT mice, as evaluated by histology and neutrophil infiltration at 18 h after CLP. Plasma levels of interleukin-10 and the keratinocyte-derived chemokine were similarly elevated in both KO and WT male mice. At transmission electron microscopy analysis, male H-AMPKα1 KO mice exhibited higher liver mitochondrial damage, which was associated with a significant decrease in liver ATP levels when compared to WT mice at 18 h after sepsis. Mortality rate was significantly higher in the male H-AMPKα1 KO group (91%) when compared to WT mice (60%) at 7 days after CLP. Female H-AMPKα1 WT mice exhibited a similar degree of histological liver and lung injury, but significantly milder liver mitochondrial damage and higher autophagy when compared to male WT mice after CLP. Interestingly, H-AMPKα1 KO female mice had lower organ neutrophil infiltration, lower liver mitochondrial damage and lower levels of cytokines than WT female mice. There was no significant difference in survival rate between WT and KO mice in the female group. In conclusion, our study demonstrates that AMPKα1 is a crucial hepatoprotective enzyme during sepsis. Furthermore, our results suggest that AMPK-dependent liver metabolic functions may influence the susceptibility to multiple organ injury in a sex-dependent manner.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Técnicas de Inativação de Genes/métodos , Hepatócitos/metabolismo , Sepse/imunologia , Sepse/mortalidade , Animais , Autofagia/genética , Modelos Animais de Doenças , Feminino , Interleucina-6/sangue , Fígado/lesões , Lesão Pulmonar/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Infiltração de Neutrófilos/genética , Sepse/sangue , Fatores Sexuais , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/sangue
19.
Shock ; 52(5): 540-549, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30562237

RESUMO

A serious consequence of sepsis is acute lung injury, whose severity is particularly impacted by the age of the patient. AMP-activated protein kinase (AMPK) is a crucial regulator of cellular metabolism, which controls mitochondrial biogenesis and autophagy. Here, we investigated the effect of pharmacological activation of AMPK with A769662 on lung injury by using a model that would preferably mimic the clinical condition of adult patients. Male C57BL/6 retired breeder mice (7-9 months old) were subjected to sepsis by cecal ligation and puncture (CLP). Mice received vehicle or A769662 (10 mg/kg) intraperitoneally at 1 h after CLP. At 6 h after CLP, vehicle-treated mice exhibited severe lung injury and elevation of plasma pro-inflammatory cytokines when compared with control mice. At molecular analysis, lung injury was associated with downregulation of AMPKα1/α2 catalytic subunits and reduced phosphorylation of AMPKß1 regulatory subunit. Treatment with A769662 ameliorated lung architecture, reduced bacterial load in lung and blood, and attenuated plasma levels of interleukin-6. This protective effect was associated with nuclear phosphorylation of AMPKα1/α2 and AMPKß1, increased nuclear expression of peroxisome proliferator-activated receptor γ co-activator-α and increased autophagy, as evaluated by the light-chain (LC)3B-I and LC3B-II content, without changes in sirtuin-1 cellular dynamics. Treatment with A769662 alone or in combination with the antimicrobial agent imipenem (25 mg/kg) increased survival rate (29% and 51%, respectively) when compared with vehicle treatment (10%) at 7 days after CLP. These data suggest that pharmacological activation of AMPK might be a beneficial approach for the treatment of sepsis in adult population.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lesão Pulmonar Aguda , Pironas/farmacologia , Sepse , Tiofenos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Compostos de Bifenilo , Ativação Enzimática/efeitos dos fármacos , Camundongos , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/enzimologia , Sepse/patologia
20.
Immunology ; 124(1): 51-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18028370

RESUMO

Peroxisome proliferator activated receptor-gamma (PPARgamma) has been reported to exert anti-inflammatory properties in endotoxic shock and sepsis. One phenomenon that alters the inflammatory response to endotoxin [lipopolysaccharide (LPS)] is endotoxin tolerance, which is caused by previous exposure to endotoxin. Here, we investigate whether changes in endogenous PPARgamma function regulate this phenomenon using three different models of LPS-induced tolerance in macrophages. In a first in vitro model, previous LPS exposure of murine J774.2 macrophages suppressed tumour necrosis factor-alpha (TNF-alpha) release in response to subsequent LPS challenge. Treatment of J774.2 cells with the PPARgamma inhibitor GW9662 did not alter tolerance induction because these cells were still hyporesponsive to the secondary LPS challenge. In a second ex vivo model, primary rat peritoneal macrophages from LPS-primed rats exhibited suppression of thromboxane B2 and TNF-alpha production, while maintaining nitrite production in response to in vitro LPS challenge. Pretreatment of rats with the PPARgamma inhibitor GW9662 in vivo failed to alter the tolerant phenotype of these primary macrophages. In a third ex vivo model, primary peritoneal macrophages with conditional deletion of PPARgamma were harvested from LPS-primed Cre-lox mice (Cre+/+ PPARgamma-/-) and exhibited significant suppression of TNF-alpha production in response to in vitro LPS challenge. Furthermore, both LPS-primed PPARgamma-deficient Cre+/+ PPARgamma-/- mice and wild-type Cre-/- PPARgamma+/+ mice exhibited reduced plasma TNF-alpha levels in response to a high dose of LPS in vivo. These data demonstrate that PPARgamma does not play a role in the LPS-induced tolerant phenotype in macrophages.


Assuntos
Tolerância Imunológica/imunologia , Macrófagos Peritoneais/imunologia , PPAR gama/imunologia , Anilidas/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta Imunológica , Tolerância Imunológica/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Knockout , PPAR gama/antagonistas & inibidores , PPAR gama/deficiência , Ratos , Ratos Long-Evans , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA