Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(33): e2203045, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35869868

RESUMO

Alkali metals are regarded as the most promising candidates for advanced anode for the next-generation batteries due to their high specific capacity, low electrochemical potential, and lightweight. However, critical problems of the alkali metal anodes, especially dendrite formation and interface stabilization, remain challenging to overcome. The solid electrolyte interphase (SEI) is a key factor affecting Li and Na deposition behavior and electrochemical performances. Herein, a facile and universal approach is successfully developed to fabricate ionic conductive interfaces for Li and Na metal anodes by modified atomic layer deposition (ALD). In this process, the Li metal (or Na metal) plays the role of Li (or Na) source without any additional Li (or Na) precursor during ALD. Moreover, the key questions about the influence of ALD deposition temperature on the compositions and structure of the coatings are addressed. The optimized ionic conductive coatings have significantly improved the electrochemical performances. In addition, the electrochemical phase-field model is performed to prove that the ionic conductive coating is very effective in promoting uniform electrodeposition. This approach is universal and can be potentially applied to other different metal anodes. At the same time, it can be extended to other types of coatings or other deposition techniques.

2.
Adv Mater ; : e2406837, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923606

RESUMO

Na metal batteries (NMBs) are attracting increasing attention because of their high energy density. However, the widespread application of NMBs is hindered by the growth of Na dendrites and interface instability. The design of artificial solid electrolyte interphase (SEI) with tuned chemical/electrochemical/mechanical properties is the key to achieving high-performance NMBs. This work develops a metal-doped nanoscale polymeric film with tunable composition, sodiophilic sites and improved stiffness. The incorporation of metal crosslinkers in the polymer chains results in exceptional electrochemical stability for Na metal anodes, leading to a significantly prolonged lifespan even at high current densities, which is at the top of the reported literature. The mechanical properties measurements and electro-chemo-mechanical phase-field model are performed to interpret the impact of the ionic transportation capability (decoupled mechanical) and mechanic property in the metal-doped polymer interface. In addition, this approach provides a promising strategy for the rational design of electrode interfaces, providing enhanced mechanical stability and improved sodiophilicity, which can open up opportunities for the fabrication of next-generation energy storage.

3.
Adv Mater ; 35(29): e2301414, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058276

RESUMO

Metal anodes are considered the holy grail for next-generation batteries because of their high gravimetric/volumetric specific capacity and low electrochemical potential. However, several unsolved challenges have impeded their practical applications, such as dendrite growth, interfacial side reactions, dead layer formation, and volume change. An electrochemically, chemically, and mechanically stable artificial solid electrolyte interphase is key to addressing the aforementioned issue with metal anodes. This study demonstrates a new concept of organic and inorganic hybrid interfaces for both Li- and Na-metal anodes. Through tailoring the compositions of the hybrid interfaces, a nanoalloy structure to nano-laminated structure is realized. As a result, the nanoalloy interface (1Al2 O3 -1alucone or 2Al2 O3 -2alucone) presents the most stable electrochemical performances for both Li-and Na-metal anodes. The optimized thicknesses required for the nanoalloy interfaces for Li- and Na-metal anodes are different. A cohesive zone model is applied to interpret the underlying mechanism. Furthermore, the influence of the mechanical stabilities of the different interfaces on the electrochemical performances is investigated experimentally and theoretically. This approach provides a fundamental understanding and establishes the bridge between mechanical properties and electrochemical performance for alkali-metal anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA